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 Abstract 
 

This Recommendation specifies mechanisms for the generation of random bits using 
deterministic methods. The methods provided are based on either hash functions, block 
cipher algorithms or number theoretic problems.  
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 Random Number Generation Using 
Deterministic Random Bit Generators 

1 Authority 

This document has been developed by the National Institute of Standards and Technology 
(NIST) in furtherance of its statutory responsibilities under the Federal Information 
Security Management Act (FISMA) of 2002, Public Law 107-347.  

NIST is responsible for developing standards and guidelines, including minimum 
requirements, for providing adequate information security for all agency operations and 
assets, but such standards and guidelines shall not apply to national security systems. This 
recommendation is consistent with the requirements of the Office of Management and 
Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as 
analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is 
provided in A-130, Appendix III. 

This recommendation has been prepared for use by Federal agencies. It may be used by 
nongovernmental organizations on a voluntary basis and is not subject to copyright. 
(Attribution would be appreciated by NIST.)  

Nothing in this Recommendation should be taken to contradict standards and guidelines 
made mandatory and binding on federal agencies by the Secretary of Commerce under 
statutory authority. Nor should this Recommendation be interpreted as altering or 
superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or 
any other federal official. 

Conformance testing for implementations of the deterministic random bit generators 
(DRBGs) that are specified in this Recommendation will be conducted within the 
framework of the Cryptographic Module Validation Program (CMVP), a joint effort of 
NIST and the Communications Security Establishment of the Government of Canada.  An 
implementation of a DRBG must adhere to the requirements in this Recommendation in 
order to be validated under the CMVP.  The requirements of this Recommendation are 
indicated by the word “shall.” 

2 Introduction 

This Recommendation specifies techniques for the generation of random bits that may then be 
used directly or converted to random numbers when random values are required by 
applications using cryptography.  

There are two fundamentally different strategies for generating random bits. One strategy is to 
produce bits non-deterministically, where every bit of output is based on a physical process 
that is unpredictable; this class of random bit generators (RBGs) is commonly known as non-
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deterministic random bit generators (NRBGs)1. The other strategy is to compute bits 
deterministically using an algorithm; this class of RBGs is known as Deterministic Random 
Bit Generators (DRBGs)2. This Recommendation will specify Approved DRBG mechanisms. 

A DRBG uses an algorithm that produces a sequence of bits from an initial value that is 
determined by a seed. Once the seed is provided and the initial value determined, the 
DRBG is said to be instantiated. Because of the deterministic nature of the process, a 
DRBG is said to produce pseudorandom bits, rather than random bits. The seed used to 
instantiate the DRBG must contain sufficient entropy to provide assurance of randomness. 
If the seed is kept secret, and the algorithm is well designed, the bits output by the DRBG 
will be unpredictable, up to the security strength of the DRBG algorithm. However, the 
security provided by an RBG that uses a DRBG is a system implementation issue; both the 
DRBG and its source of entropy must be considered when determining whether the RBG is 
appropriate for use by consuming applications. Therefore, in this Recommendation the 
acronym RBG will be used to mean a DRBG and its source of entropy.  

3 Scope 

This Recommendation includes: 

1. Requirements for the use of deterministic random bit generator mechanisms, 

2. Specifications for deterministic random bit generator mechanisms that use hash 
functions, block ciphers and number theoretic problems, 

3. Implementation issues, and 

4. Assurance considerations. 

This Recommendation specifies several diverse DRBG mechanisms, all of which provided 
acceptable security when this Recommendation was published. However, in the event that 
new attacks are found on a particular class of DRBG mechanisms, a diversity of approved 
mechanisms will allow a timely transition to a different class of DRBG mechanism.     

Random number generation does not require interoperability between two entities, e.g., 
communicating entities may use different DRBG mechanisms without affecting their ability 
to communicate. Therefore, an entity may choose a single appropriate DRBG mechanism 
for their consuming applications; see Annex G for a discussion of DRBG selection. 

The precise structure, design and development of a random bit generator is outside the 
scope of this Recommendation. 
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1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number 
Generators. 
2 DRBGS have also been called Pseudorandom Bit Generators. 
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This Recommendation provides preliminary guidance on the selection of an entropy source 
and the construction of an RBG from an entropy source and an Approved DRBG. 
Additional guidance is under development in these areas.  

4 Terms and Definitions 

For the purposes of this part of the Recommendation, the following terms and definitions 
apply. 

Algorithm A clearly specified mathematical process for computation; a 
set of rules that, if followed, will give a prescribed result. 

Approved FIPS approved, NIST Recommended and/or validated by the 
Cryptographic Module Validation Program (CMVP).  

Backtracking Resistance The assurance that the output sequence from an RBG remains 
indistinguishable from an ideal random sequence even to an 
attacker who compromises the RBG in the future, up to the 
claimed security strength of the RBG.  For example, an RBG 
that allowed an attacker to "backtrack" from the current 
working state to generate prior outputs would not provide 
backtracking resistance.  The complementary assurance is 
called Prediction Resistance. 

Biased A value that is chosen from a sample space is said to be biased 
if one value is more likely to be chosen than another value. 
Contrast with unbiased.  

Bitstring A bitstring is an ordered sequence of 0’s and 1’s. The leftmost 
bit is the most significant bit of the string and is the newest bit 
generated. The rightmost bit is the least significant bit of the 
string. 

Bitwise Exclusive-Or An operation on two bitstrings of equal length that combines 
corresponding bits of each bitstring using an exclusive-or 
operation. 

Block Cipher A symmetric key cryptographic algorithm that transforms a 
block of information at a time using a cryptographic key. For 
a block cipher algorithm, the length of the input block is the 
same as the length of the output block. 

Consuming Application The application (including middle ware) that uses random 
numbers or bits obtained from an Approved random bit 
generator. 

11
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Cryptographic Key (Key) A parameter that determines the operation of a cryptographic 
function such as: 

1. The transformation from plaintexttociphertext and vice 
versa, 

2. The synchronized generation of keying material, 

3. A digital signature computation or verification.  

Deterministic Algorithm An algorithm that, given the same inputs, always produces the 
same outputs. 

Deterministic Random 
Bit Generator (DRBG) 

An RBG that uses a deterministic algorithm to produce a 
pseudorandom sequence of bits from a secret initial value 
called a seed along with other possible inputs. A DRBG is 
often called a Pseudorandom Number (or Bit) Generator.   

DRBG Boundary A conceptual boundary that is used to explain the operations 
of a DRBG and its interaction with and relation to other 
processes. 

Entropy A measure of the disorder, randomness or variability in a 
closed system. The entropy of X is a mathematical measure of 
the amount of information provided by an observation of X.  
As such, entropy is always relative to an observer and his or 
her knowledge prior to an observation. Also, see min-entropy. 

Entropy Input The input to an RBG of a string of bits that contains entropy, 
that is, the entropy input is digitized and is assessed.  For an 
NRBG, this is obtained from an entropy source.  For a DRBG, 
this is included in the seed material. 

Entropy Source A source of unpredictable data. There is no assumption that 
the unpredictable data has a uniform distribution. The entropy 
source includes a noise source, such as thermal noise or hard 
drive seek times; a digitalization process; an assessment 
process; an optional conditioning process and health tests.  
Thus, the entropy source provides bitstrings containing 
entropy and an assessment of the entropy that is provided.  

Equivalent Process Two processes are equivalent if, when the same values are 
input to each process, the same output is produced. 
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Exclusive-or A mathematical operation, symbol ⊕, defined as:  

0 ⊕ 0 = 0 
0 ⊕ 1 = 1 
1 ⊕ 0 = 1  
1 ⊕ 1 = 0. 

Equivalent to binary addition without carry. 

Full Entropy Each bit of a bitstring with full entropy is unpredictable (with 
a uniform distribution) and independent of every other bit of 
that bitstring. 

Hash Function A (mathematical) function that maps values from a large 
(possibly very large) domain into a smaller range. The 
function satisfies the following properties: 

1. (One-way) It is computationally infeasible to find any 
input that maps to any pre-specified output; 

2. (Collision free) It is computationally infeasible to find 
any two distinct inputs that map to the same output.  

Health Testing Testing within an implementation immediately prior to or 
during normal operation to determine that the implementation 
continues to perform as implemented and as validated (if 
implementation validation was performed). 

Implementation An implementation of an RBG is a cryptographic device or 
portion of a cryptographic device that is the physical 
embodiment of the RBG design, for example, some code 
running on a computing platform.  

Implementation Testing 
for Validation 

Testing by an independent and accredited party to ensure that 
an implemention of this Recommendation conforms to the 
specifications of this Recommendation. 

Instantiation of an RBG An instantiation of an RBG is a specific, logically 
independent, initialized RBG.  One instantiation is 
distinguished from another by a handle (e.g., an identifying 
number).   

Internal State The collection of stored information about an RBG 
instantiation. This can include both secret and non-secret 
information. 

Key See Cryptographic Key. 
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Min-entropy The worst-case (i.e., the greatest lower bound) measure of 
uncertainty for a random variable. 

Non-Deterministic 
Random Bit Generator 
(Non-deterministic RBG) 
(NRBG) 

An RBG that produces output that is fully dependent on some 
unpredictable physical source that produces entropy.  Contrast 
with a DRBG. Other names for non-deterministic RBGs are 
True Random Number (or Bit) Generators and, simply, 
Random Number (or Bit) Generators. 

Personalization String An optional string of bits that is combined with a secret input 
and a nonce to produce a seed. 

Prediction Resistance Assurance that a compromise of the DRBG internal state has 
no effect on the security of future DRBG outputs.  That is, an 
adversary who is given access to all of the output sequence 
after the compromise cannot distinguish it from random; if the 
adversary knows only part of the future output sequence, he 
cannot predict any bit of that future output sequence that he 
has not already seen. The complementary assurance is called 
Backtracking Resistance. 

Pseudorandom A process (or data produced by a process) is said to be 
pseudorandom when the outcome is deterministic, yet also 
effectively random as long as the internal action of the process 
is hidden from observation.  For cryptographic purposes, 
“effectively” means “within the limits of the intended 
cryptographic strength.”   

Pseudorandom Number 
Generator 

See Deterministic Random Bit Generator. 

Public Key In an asymmetric (public) key cryptosystem, that key of an 
entity’s key pair that is publicly known. 

Public Key Pair In an asymmetric (public)  key cryposystem, the public key 
and associated private key. 

Random Number For the purposes of this Recommendation, a value in a set that 
has an equal probability of being selected from the total 
population of possibilities and, hence, is unpredictable.  A 
random number is an instance of an unbiased random variable, 
that is, the output produced by a uniformly distributed random 
process. 

Random Bit Generator 
(RBG) 

A device or algorithm that outputs a sequence of binary bits 
that appears to be statistically independent and unbiased. 
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Random Number 
Generator (RNG) 

A device or algorithm that can produce a sequence of random 
numbers that appears to be from an ideal random distribution. 

Reseed To aquire additional bits with sufficient entropy for the 
desired security strength 

Security Strength A number associated with the amount of work (that is, the 
number of operations) that is required to break a cryptographic 
algorithm or system; a security strength is specified in bits and 
is a specific value from the set (112, 128, 192, 256). The 
amount of work needed is 2security_strength. 

Seed Noun : A string of bits that is used as input to a Deterministic 
Random Bit Generator (DRBG). The seed will determine a 
portion of the internal state of the DRBG, and its entropy must 
be sufficient to support the security strength of the DRBG.  

Verb : To aquire bits with sufficient entropy for the desired 
security strength. These bits will be used as input to a DRBG 
to determine a portion of the initial internal state. Also see 
reseed. 

Seedlife The length of the seed period. 

Seed Period The period of time between initializing a DRBG with one seed 
and reseeding that DRBG with another seed. 

Sequence An ordered set of quantities. 

Shall Used to indicate a requirement of this Recommendation. 

Should Used to indicate a highly desirable feature for a DRBG that is 
not necessarily required by this Recommendation. 

String See Bitstring. 

Unbiased A value that is chosen from a sample space is said to be 
unbiased if all potential values have the same probability of 
being chosen. Contrast with biased. 

Unpredictable In the context of random bit generation, an output bit is 
unpredictable if an adversary has only a negligible advantage 
(that is, essentially not much better than chance) in predicting 
it correctly. 
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Working State A subset of the internal state that is used by a DRBG to 
produce pseudorandom bits at a given point in time. The 
working state (and thus, the internal state) is updated to the 
next state prior to producing another string of pseudorandom 
bits. 

5 Symbols and Abbreviated Terms 

The following abbreviations are used in this document: 

Abbreviation Meaning 

AES Advanced Encryption Standard. 

DRBG Deterministic Random Bit Generator. 

ECDLP Elliptic Curve Discrete Logarithm Problem. 

FIPS Federal Information Processing Standard. 

HMAC Keyed-Hash Message Authentication Code. 

NRBG Non-deterministic Random Bit Generator. 

RBG Random Bit Generator. 

TDEA Triple Data Encryption Algorithm. 

 

The following symbols are used in this document. 
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Symbol Meaning 

+ Addition 

⎡X⎤ 

 

Ceiling: the smallest integer ≥ X. For 
example, ⎡ ⎤5  = 5, and  = 6.  ⎡ ⎤3.5

⎣X⎦ The largest integer less than or equal to X. 
For example, ⎣5⎦ = 5, and ⎣5.3⎦ = 5. 

X ⊕ Y Bitwise exclusive-or (also bitwise addition 
mod 2) of two bitstrings X and Y of the 
same length.  

X || Y Concatenation of two strings X and Y. X and 
Y are either both bitstrings, or both octet 
strings.  
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Symbol Meaning 

gcd (x, y) The greatest common divisor of the integers 
x and y. 

len (a) The length in bits of string a. 

x mod n The unique remainder r (where 0 ≤ r ≤ n-1) 
when integer x is divided by n. For example, 
23 mod 7 = 2. 

 

 
Used in a figure to illustrate a "switch" 
between sources of input. 

{a1, ...ai} The internal state of the DRBG at a point in 
time. The types and number of the ai 
depends on the specific DRBG. 

0x A string of x zero bits. 

6 Document Organization 

This Recommendation is organized as follows: 

⎯ Section 7 provides a functional model for a DRBG and discusses the major DRBG 
components.  

⎯ Section 8 provides concepts and general requirements for the implementation and 
use of a DRBG.  

⎯ Section 9 specifies the DRBG functions introduced in Section 8. These functions 
use the DRBG algorithms specified in Section 10. 

⎯ Section 10 specifies Approved DRBG algorithms. Algorithms have been specified 
that are based on the hash functions specified in FIPS 180-2 (Secure Hash 
Standard), block cipher algorithms specified in FIPS 197 and NIST Special 
Publication 800-67 (AES and TDEA, respectively), and a number theoretic problem 
that is expressed in elliptic curve technology.     

⎯ Section 11 addresses assurance issues for DRBGs, including documentation 
requirements, implementation validation and health testing, 

This Recommendation also includes the following appendices: 

⎯ Appendix A specifies additional DRBG-specific information.  

⎯ Appendix B provides conversion routines. 

⎯ Appendix C provides guidance on entropy and entropy sources. 
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⎯ Appendix D provides guidance on the construction of a random bit generator from 
an entropy source and a DRBG. 

⎯ Appendix E discusses security considerations when extracting bits in the 
Dual_EC_DRBG. 

⎯ Appendix F provides example pseudocode for each DRBG. 

⎯ Appendix G provides a discussion on DRBG selection. 

⎯ Appendix H provides references. 
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7 DRBG Functional Model 

Figure 1 provides a functional model of DRBGs. The components of this model are 
discussed in the following subsections. 

Internal State Generate
Function

Error
State

Instantiate
Function

Reseed
Function

Pseudorandom Output
Error
State

Additional Input

Health Tests

Entropy Input Nonce
Personalization 

String

Uninstantiate
Function

7.1 Entropy Input 

Figure 1: DRBG Functional Model 

The entropy input is provided to a DRBG for the seed (see Section 8.6). The entropy input 
and the seed shall be kept secret. The secrecy of this information provides the basis for the 
security of the DRBG. At a minimum, the entropy input shall provide the requested amount 
of entropy for a DRBG. Appropriate sources for the entropy input are discussed in 
Appendix C. 

Ideally, the entropy input will be full entropy; however, the DRBGs have been specified to 
allow for some bias in the entropy input by allowing the length of the entropy input to be 
longer than the required amount of entropy (expressed in bits). The entropy input can be 
defined to be a variable length (within limits), as well as fixed length. In all cases, the 
DRBG expects that when entroy input is requested, the returned bitstring will contain at 
least the requested amount of entropy. Additional entropy beyond the amount requested is 
not required, but is desirable.  
7.2 Other Inputs 
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DRBG itself does not rely on the secrecy of this information. The information should be 

Other information may be obtained by a DRBG as input. This information may or may not 
be required to be kept secret by a consuming application; however, the security of the 
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 may be required, and if used, it is combined with the 

ongly advises the insertion of a personalization string during 
 

e 

eeding and when pseudorandom bits are 

The internal state is the memory of the DRBG and consists of all of the parameters, 
 

nd/or 

The DRBG functions handle the DRBG’s internal state. The DRBGs in this 

with a nonce 
 

2. rate function generates pseudorandom bits upon request, using the current 

 3. the current 

4. nction zeroizes (i.e., erases) the internal state. 
7.5

Health testing is used to determine that the DRBG continues to function correctly. The 

 

checked for validity when possible. 

During DRBG instantiation, a nonce
entropy input to create the initial DRBG seed. The nonce and its use are discussed in 
Sections 8.6.1 and 8.6.7. 

This Recommendation str
DRBG instantiation; when used, the personalization string is combined with the entropy
bits and a nonce to create the initial DRBG seed. The personalization string shall be uniqu
for all instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.7.1 for 
additional discussion on personalization strings. 

Additional input may also be provided during res
requested. See Section 8.7.2 for a discussion of this input. 
7.3 The Internal State 

variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data (e.g., the security level) and data that is acted upon a
modified during the generation of pseudorandom bits (i.e., the working state). The contents 
of the internal state is dependent on the specific DRBG and includes all information that is 
required to produce the pseudorandom bits from one request to the next.  
7.4 The DRBG Functions 

Recommendation have four separate functions (exclusive of health tests):  

1. The instantiate function acquires entropy input and may combine it 
and a personalization string to create a seed from which the initial internal state is
created. 

The gene
internal state, and generates a new internal state for the next request. 

The reseed function acquires new entropy input and combines it with 
internal state and any additional input that is provided to create a new seed and a 
new internal state. 

The uninstantiate fu
 Health Tests 

health tests are discussed in Sections 9.5 and 11.3.  
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8. DRBG Concepts and General Requirements 

8.1 DRBG Functions  

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may 
also include a reseed function. A DRBG shall be instantiated prior to the generation of 
output by the DRBG. These functions are specified in Section 9. 
8.2 DRBG Instantiations 

Figure 2: DRBG Instantiation 

A DRBG may be used to obtain 
pseudorandom bits for different 
purposes (e.g., DSA private keys 
and AES keys) and may be 
separately instantiated for each 
purpose.  

A DRBG is instantiated using a seed 
and may be reseeded; when 
reseeded, the seed shall be different 
than the seed used for instantiation. 
Each seed defines a seed period for 
the DRBG instantiation; an 
instantiation consists of one or more 
seed periods that begin when a new 
seed is acquired (see Figure 2).  
8.3 Internal States 

During instantiation, an initial internal state is derived from the seed. The internal state for 
an instantiation includes: 

1. Working state: 

a. One or more values that are derived from the seed and become part of the 
internal state; these values must usually remain secret, and 

b. A count of the number of requests or blocks produced since the instantiation 
was seeded or reseeded. 

2. Administrative information (e.g., security strength and prediction resistance flag). 

The internal state shall be protected at least as well as the intended use of the 
pseudorandom output bits requested by the consuming application. A DRBG 
implementation may be designed to handle multiple instantiations. Each DRBG 
instantiation shall have its own internal state. The internal state for one DRBG 
instantiation shall not be used as the internal state for a different instantiation. 

A DRBG transitions between internal states when the generator is requested to provide 
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new pseudorandom bits.  A DRBG may also be implemented to transition in response to 
internal or external events (e.g., system interrupts) or to transition continuously (e.g., 
whenever time is available to run the generator). 
8.4 Security Strengths Supported by an Instantiation 

The DRBGs specified in this Recommendation support four security strengths: 112, 128, 
192 or 256 bits. The actual security strength supported by a given instantiation depends on 
the DRBG implementation and on the amount of entropy provided to the instantiate 
function. Note that the security strength actually supported by a particular instantiation 
could be less than the maximum security strength possible for that DRBG implementation 
(see Table 1). For example, a DRBG that is designed to support a maximum security 
strength of 256 bits could be instantiated to support only a 128-bit security strength if the 
additional security provided by the 256-bit security strength is not required. 
Table 1: Possible Instantiated Security Strengths 

Maximum Designed 
Security Strength 

112 128 192 256 

Possible Instantiated 
Security Strengths 

112 112, 128 112, 128, 192 112, 128, 192, 
256 

 

A security strength for the instantiation is requested by a consuming application during 
instantiation, and the instantiate function obtains the appropriate amount of entropy for the 
requested security strength. Any security strength may be requested, but the DRBG will 
only be instantiated to one of the four security strengths above, depending on the DRBG 
implementation. A requested security strength that is below the 112-bit security strength or 
is between two of the four security strengths will be instantiated to the next highest level 
(e.g., a requested security strength of 96 bits will result in an instantiation at the 112-bit 
security strength). 

Following instantiation, requests can be made to the generate function for pseudorandom 
bits. For each generate request, a security strength to be provided for the bits is requested. 
Any security strength can be requested up to the security strength of the instantiation, e.g., 
an instantiation could be instantiated at the 128-bit security strength, but a request for 
pseudorandom bits could indicate that a lesser security strength is actually required for the 
bits to be generated. The generate function checks that the requested security strength does 
not exceed the security strength for the instantiation. Assuming that the request is valid, the 
requested number of bits is returned. 

When an instantiation is used for multiple purposes, the minimum entropy requirement for 
each purpose must be considered. The DRBG needs to be instantiated for the highest 
security strength required. For example, if one purpose requires a security strength of 112 
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to 
be instantiated to support the 256-bit security strength. 
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8.5 DRBG Boundaries 

As a convenience, this Recommendation uses the notion of a “DRBG boundary” to explain 
the operations of a DRBG and its interaction with and relation to other processes; a DRBG 
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG 
boundary is entered via the DRBG’s public interfaces, which are made available to 
consuming applications.  

Within a DRBG boundary,  

1. The DRBG internal state and the operation of the DRBG functions shall only be 
affected according to the DRBG specification.  

2. The DRBG internal state shall exist solely within the DRBG boundary. The 
internal state shall be contained within the DRBG boundary and shall not be 
accessed by non-DRBG functions or other instantiations of that or other DRBGs. 

3. Information about secret parts of the DRBG internal state and intermediate values 
in computations involving these secret parts shall not affect any information that 
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit 
outputs.  

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other 
applications may use the same cryptographic primitive as long as the DRBG’s internal 
state and the DRBG functions are not affected. 

A DRBG’s functions may be contained within a single device, or may be distributed across 
multiple devices (see Figures 3 and 4). 
Figure 3 depicts a DRBG for which all 
functions are contained within the same 
device. Figure 4 provides an example of 
DRBG functions that are distributed across 
multiple devices. In this latter case, each 
device has a DRBG sub-boundary that 
contains the DRBG functions implemented 
on that device, and the boundary around the 
entire DRBG consists of the aggregation of 
sub-boundaries providing the DRBG 
functionality. The use of distributed DRBG 
functions may be convenient for restricted 
environments (e.g., smart card applications) 
in which the primary use of the DRBG does 
not require repeated use of the instantiate or 
reseed functions.   

DRBG Boundary

Entropy
Input

States

Instantiate

Reseed
Instantiation

Request Bits

Testing
Procedure

Uninstantiate
DRBG Uninstantiate

Procedure

Test
DRBG

Generate
Pseudorandom
Bits Procedure

Reseed
DRBG

Procedure

Instantiate
DRBG

Procedure

Figure 3: DRBG Functions within a 
Single Device 

Although the entropy input is shown in the figures as originating outside the DRBG 
boundary, it may originate from within the boundary. 
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Each DRBG boundary  or sub-boundary shall contain a test function to test the “health” of 
other DRBG functions within that boundary. In addition, each boundary or sub-boundary 
shall contain an uninstantiate function in order to perform and/or react to health testing. 

Figure 4: Distributed DRBG Functions 

DRBG Sub-Boundary (Instantiate) DRBG Sub-Boundary (Generate)

Instantiate
Function

Protected State

Entropy Input

Test
Function

DRBG Boundary

Uninstantiate
Function Function

Test
Function

Uninstantiate
Function
Generate

When DRBG functions are distributed, appropriate mechanisms shall be used to protect 
the confidentiality and integrity of the internal state or parts of the internal state that are 
transferred between the distributed DRBG sub-boundaries. The confidentiality and 
integrity mechanisms and security strength shall be consistent with the data to be protected 
by the DRBG’s consuming application (see SP 800-57). 
8.6 Seeds 

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the 
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and 
determine the initial internal state. 

Reseeding is a means of restoring the secrecy of the output of the DRBG if a seed or the 
internal state becomes known. Periodic reseeding is a good way of addressing the threat of 
either the DRBG seed, entropy input or working state being compromised over time. In 
some implementations (e.g., smartcards), an adequate reseeding process may not be 
possible. In these cases, the best policy might be to replace the DRBG, obtaining a new 
seed in the process (e.g., obtain a new smart card). 

The seed and its use by a DRBG shall be generated and handled as specified in the 
following subsections. 
8.6.1 Seed Construction for Instantiation 
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determine a seed for instantiation consists of entropy input, a nonce and an optional 
Figure 5 depicts the seed construction process for instantiation. The seed material used to 
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Figure 6 depicts the seed construction 

 in the 

y 

 

, a 

quirements for the Entropy Input 

The entropy input shall have entropy that is equal to or greater than the security strength of 

ng it 
 

                                                

personalization string. Entropy input 
shall always be used in the construction 
of a seed; requirements for the entropy
input are discussed in Section 8.6.3. 
Except for the case noted below, a nonc
shall be used; requirements for the no
are discussed in Section 8.6.7. This 
Recommendation also advises the 
inclusion of a personalization string;
requirements for the personalizatio
string are discussed in Section 8.7.1.  

Depending on the DRBG and the sour
of the entropy input, a derivation function 
may be required to derive a seed from the
seed material. When full entropy input is readily available, the DRBG based on block 
cipher algorithms (see Section 10.2) may be implemented without a derivation function. 
When implemented in this manner, a nonce (as shown in Figure 5) is not used. Note, 
however, that the personalization string could contain a nonce, if desired. 
8.6.2 Seed Construction for 

Figure 5: Seed Construction for Instantiation

Reseeding 

process for reseeding an instantiation. 
The seed material for reseeding 
consists of a value that is carried
internal state3, new entropy input and, 
optionally, additional input. The 
internal state value and the entrop
input are required; requirements for 
the entropy input are discussed in 
Section 8.6.3. Requirements for the
additional input are discussed in 
Section 8.7.2. As in Section 8.6.1
derivation function may be required 
for reseeding. See Section 8.6.1 for 
further guidance. 
8.6.3. Entropy Re

Figure 6: Seed Construction for Reseeding 

the instantiation. Additional entropy may be provided in the nonce or the optional 
personalization string during instantiation, or in the additional input during reseedi
generation, but this is not required. The use of more entropy than the minimum value will

 
3 See each DRBG specification for the value that is used. 
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e 

ore 

The minimum length of the seed depends on the DRBG and the security strength required 

The source of the entropy input shall be either: 

us forming a chain of at least two DRBGs; the highest-

3.  source.  

Further discussion about entropy and entropy sources is provided in Appendix C; 

The entropy input and the resulting seed shall be handled in a manner that is consistent 

ed to 

A nonce may be required in the construction of a seed during instantation in order to 

 
  

For cas me as the 

its of security. When 

offer a security “cushion”. This may be useful if the assessment of the entropy provided in th
entropy input is incorrect. Having more entropy than the assessed amount is acceptable; 
having less entropy than the assessed amount could be fatal to security. The presence of m
entropy than is required, especially during the instantiatiation, will provide a higher level of 
assurance than the minimum required entropy. 
8.6.4 Seed Length 

by the consuming application. See Section 10. 
8.6.5 Entropy Input Source 

1. An Approved NRBG,  

2. An Approved DRBG, th
level DRBG in the chain shall be seeded by an Approved NRBG or an entropy 
source, or 

An entropy

discussion on RBG construction is provided in Appendix D.  
8.6.6 Entropy Input and Seed Privacy 

with the security required for the data protected by the consuming application. For 
example, if the DRBG is used to generate keys, then the entropy inputs and seeds us
generate the keys shall (at a minimum) be protected as well as the key. 
8.6.7 Nonce 

provide a security cushion to block certain attacks. The nonce shall be either: 

a. A random value with at least (security_strength/2) bits of entropy, 

b. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat. 

e a, the nonce may be acquired from the same source and at the same ti
entropy input. In this case, the seed could be considered to be constructed from an “extra 
strong” entropy input and the optional personalization string, where the entropy for the 
entropy input is equal to or greater than (3/2 security_strength) bits. 

The nonce is required for instantiation to provide security_strength b
a DRBG is instantiated many times without a nonce, a compromise may become more 
likely. In some consuming applications, a single DRBG compromise may reveal long-term 
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secrets (e.g., a compromise of the DSA per-message secret reveals the signing key). 
8.6.8 Reseeding 
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Generating too many outputs from a seed (and other input information) may provide 

ks, 

i.e., the length of the seed period); the maximum seedlife 

n for the 
 

 instantiation. However, reseeding is 

 

d Use 

A seed that is used to initialize one instantiation of a DRBG shall not be intentionally used 

Seeds used by DRBGs and the entropy input used to create those seeds shall not be used 

Other input may be provided during DRBG instantiation, pseudorandom bit generation and 

 value of the input may or may 

ut 

sufficient information for successfully predicting future outputs unless prediction 
resistance is provided (see Section 8.8). Periodic reseeding will reduce security ris
reducing the likelihood of a compromise of the data that is protected by cryptographic 
mechanisms that use the DRBG. 

Seeds shall have a finite seedlife (
is dependent on the DRBG used. Reseeding is accomplished by 1) an explicit reseeding of 
the DRBG by the consuming application, or 2) by the generate function when prediction 
resistance is requested (see Section 8.8) or the limit of the seedlife is reached.  

Reseeding of the DRBG shall be performed in accordance with the specificatio
given DRBG. The DRBG reseed specifications within this Recommendation are designed
to produce a new seed that is determined by both the old seed and newly-obtained entropy 
input that will support the desired security strength.  

An alternative to reseeding is to create an entirely new
preferred over creating a new instantiation. If there is an undetected failure in the entropy 
input source, a reseeded DRBG instantiation will still retain any previous entropy, whereas
a re-instantiated DRBG may not have sufficient entropy to support the requested security 
strength.  
8.6.9 See

to reseed the same instantiation or used as a seed for another DRBG instantiation. Note 
that a DRBG does not provide output until a seed is available, and the internal state has 
been initialized (see Section 10). 
8.6.10 Seed Separation 

for other purposes (e.g., domain parameter or prime number generation). 
8.7  Other Inputs to the DRBG 

reseeding. This input may contain entropy, but this is not required. During instantiation, a 
personalization string may be provided and combined with entropy input and a nonce to 
derive a seed (see Section 8.6.1). When pseudorandom bits are requested and when 
reseeding is performed, additional input may be provided. 

Depending on the method for acquiring the input, the exact
not be known to the user or consuming application. For example, the input could be 
derived directly from values entered by the user or consuming application, or the inp

 

 



NIST SP 800-90  DRAFT  December 2005 

28

 

., 

String 

During instantiation, a personalization string should be used to derive the seed (see 

should 

 

 serial numbers, 

ation, 

words, 

er-device 

• mps, 

• Network addresses,  

ues for this specific 

• s, 

ers,  

8.7.2 d

During each request for bits from a DRBG and during reseeding, the insertion of additional 

ing 

e 
e 

d Backtracking Resistance 

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some 

mise occurs at Statex, where Statex contains both secret and public 

could be derived from information introduced by the user or consuming application (e.g
from timing statistics based on key strokes), or the input could be the output of another 
DRBG or an NRBG.  
8.7.1 Personalization 

Section 8.6.1). The intent of a personalization string is to differentiate this DRBG 
instantiation from all others that might ever be created.  The personalization string 
be set to some bitstring that is as unique as possible, and may include secret information. 
The value of any secret information contained in the personalization string should be no 
greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
will protect this information from disclosure.  Good choices for the personalization string 
contents include: 

• Device

• Public keys, 

• User identific

• Private keys, 

• PINs and pass

• Secret per-module or p
values, 

Timesta

• Special secret key val
DRBG instantiation, 

Application identifier

• Protocol version identifi

• Random numbers, and 

• Nonces.  

Ad itional Input 

input is allowed. This input is optional, and the ability to enter additional input may or may 
not be included in an implementation.   Additional input may be either secret or publicly 
known; its value is arbitrary, although its length may be restricted, depending on the 
implementation and the DRBG. The use of additional input may be a means of provid
more entropy for the DRBG internal state that will increase assurance that the entropy 
requirements are met. If the additional input is kept secret and has sufficient entropy, th
input can provide more assurance when recovering from the compromise of the seed or on
or more DRBG internal states.  
8.8 Prediction Resistance an

subset of bits from each internal state are used to generate pseudorandom bits upon request 
by a user. The following discussions will use the figure to explain backtracking and 
prediction resistance.  

Suppose that a compro
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information. 
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Backtracking Resistance: B ompromise of the DRBG 

 

 Statex. Backtracking resistance means that: 

ered, 

Backtra  DRBG algorithm is a one-

acktracking resistance means that a c
Figure 7: Sequence of DRBG States 

internal state has no effect on the security of prior outputs.  That is, an adversary who is 
given access to all of that prior output sequence cannot distinguish it from random; if the
adversary knows only part of the prior output, he cannot determine any bit of that prior 
output sequence that he has not already seen.  

For example, suppose that an adversary knows

a. The output bits from State1 to Statex-1 cannot be distinguished from random. 

b. The prior internal state values themselves (State1 to Statex-1 ) cannot be recov
given knowledge of the secret information in Statex. 

cking resistance can be provided by ensuring that the
way function. All DRBGs in this Recommendation have been designed to provide 
backtracking resistance. 

 Prediction Resistance: Prediction resistance means that a compromise of the DRBG 
ary 

it 

 means that: 

b. selves (Statex+1 and forward ) cannot be 

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded 

th) 

y the 

internal state has no effect on the security of future DRBG outputs.  That is, an advers
who is given access to all of the output sequence after the compromise cannot distinguish 
from random; if the adversary knows only part of the future output sequence, he cannot 
predict any bit of that future output sequence that he has not already seen. 

For example, suppose that an adversary knows Statex: Prediction resistance

a. The output bits from Statex+1 and forward cannot be distinguished from an ideal 
random bitstring by the adversary. 

The future internal state values them
predicted, given knowledge of Statex. 

between DRBG requests.  That is, an amount of entropy that is sufficient to support the 
security strength of the DRBG (i.e., an amount that is at least equal to the security streng
must be provided to the DRBG in a way that ensures that knowledge of the current DRBG 
internal state does not allow an adversary any useful knowledge about future DRBG 
internal states or outputs. Prediction resistance is provided in this Recommendation b
use of a prediction resistance flag. 
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9 DRBG Functions 
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The DRBG functions in this Recommendation are specified as an algorithm and an 
“envelope” of pseudocode around that algorithm. The pseudocode in the envelopes 
(provided in this section) checks the input parameters, obtains input not provided by the 
input parameters, accesses the appropriate DRBG algorithm and handles the internal state. 
A function need not be implemented using such envelopes, but the function shall have 
equivalent functionality.  

In the specifications of this Recommendation, a Get_entropy_input pseudo-function is 
used for convenience. This function is not fully specified in this Recommendation, but has 
the following meaning: 

Get_entropy_input: A function that is used to obtain entropy input. The function call 
is: 

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length, 
max_ length) 

which requests a string of bits (entropy_input) with at least min_entropy bits of 
entropy. The length for the string shall be equal to or greater than min_length bits, and 
less than or equal to max_length bits. A status code is also returned from the function. 

Note that an implementation may choose to define this functionality differently; for 
example, for many of the DRBGs, the min_length = min_entropy for the 
Get_entropy_input function, in which case, the second parameter could be omitted. 
9.1 Instantiating a DRBG 

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate 
function: 

1. Checks the validity of the input parameters, 

2. Determines the security strength for the DRBG instantiation, 

3. Determines any DRBG specific parameters (e.g., elliptic curve domain parameters), 

4. Obtains entropy input with entropy sufficient to support the security strength, 

5. Obtains the nonce (if required), 

6. Determines the initial internal state using the instantiate algorithm, 

7. Returns a state_handle for the internal state to the consuming application (see 
below). 

Let working_state be the working state for the particular DRBG, and let min_length, max_ 
length, and highest_supported_security_strength be defined for each DRBG (see Section 
10).  
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ent process shall be used to instantiate a DRBG. 

Input from a consuming application for instantiation: 
the 

ot 

ce_flag: Indicates whether or not prediction resistance may be 

ation must determine whether or not prediction resistance may be 

implementation. If the prediction_resistance_flag is not needed (i.e., because 
predict
be omi
state in instantiate process. 

 be 
 

eter 
 

ersonalization string. 

  shall not be provided 
onsuming application as an input 

tantiate request. 

he 

 that if a random value is used as 
ngle 

 first 
r would be adjusted to include the entropy for the nonce (i.e., 

 

The following or an equival

1.  requested_instantiation_security_strength: A requested security strength for 
instantiation. DRBG implementations that support only one security strength do n
require this parameter; however, any consuming application using that DRBG 
implementation must be aware of this limitation. 

2. prediction_resistan
required by the consuming application during one or more requests for 
pseudorandom bits. DRBGs that are implemented to always or never support 
prediction resistance do not require this parameter. However, the user of a 
consuming applic
required by the consuming application before electing to use such a DRBG 

ion resistance is always or never performed), then the input parameter may 
tted, and the prediction_resistance_flag may be omitted from the internal 
 step 11 of the 

3. personalization_string: An optional input that provides personalization information 
(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string 
(max_personalization_string_length) is implementation dependent, but shall
less than  or equal to the maximum length specified for the given DRBG (see
Section 10). If a personalization string will never be used, then the input param
and step 3 of the instantiate process may be omitted, and process step 9 may be
modified to omit the p

Required information not provided by the consuming application during 
instantiation: 

Comment: This input
by the c
parameter during the ins

1. entropy_input: Input bits containing entropy. The maximum length of the 
entropy_input is implementation dependent, but shall be less than or equal to t
specified maximum length for the selected DRBG (see Section 10). 

2. nonce: A nonce as specified in Section 8.6.7. Note
the nonce, the entropy_input and nonce could be acquired using a si
Get_entropy_input call (see step 6 of the instantiate process); in this case, the
paramete
security_strength would be increased by at least security_strength/2), process step 
8 would be omitted, and the nonce would be omitted from the parameter list in 
process step 9.  
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Output to a consuming application after instantiation: 
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tion. The status will indicate 
an 

2. r this instantiation in subsequent 

Inform

The
info

Instan
t 

1. 
 return an ERROR_FLAG. 

3. h, 

4. 

equired by 
the Dual_EC_DRBG when multiple curves 

5. Using security_strength, select appro

6. n_length, 

8. 
ility of the 

algorithm in Section 10 to obtain values for 
the initial working_state. 

1. status: The status returned from the instantiate func
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or 
invalid state_handle shall be returned. A consuming application should check the 
status to determine that the DRBG has been correctly instantiated. 

state_handle: Used to identify the internal state fo
calls to the generate, reseed, uninstantiate and test functions. 

ation retained within the DRBG boundary after instantiation: 

 internal state for the DRBG, including the working_state and administrative 
rmation (see Sections 8.3 and 10). 

tiate Process: 
Comment: Check the validity of the inpu
parameters. 

If requested_instantiation_security_strength > 
highest_supported_security_strength, then

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then 
return an ERROR_FLAG. 

If the length of the personalization_string > max_personalization_string_lengt
return an ERROR_FLAG.  

Set security_strength to the nearest security strength greater than or equal to 
requested_instantiation_security_strength. 

Comment: The following step is r

are available (see Section 10.3.1.2). 
Otherwise, the step should be omitted. 

priate DRBG parameters. 

Comment: Obtain the entropy input. 

 (status, entropy_input) = Get_entropy_input (security_strength, mi
max_length). 

7. If an ERROR is returned in step 6, return a CATASTROPHIC_ERROR_FLAG. 

Obtain a nonce. Comment: This step shall include any 
appropriate checks on the acceptab
nonce. See Section 8.6.7. 

Comment: Call the appropriate instantiate 
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ropy_input, nonce, 

10.

11. or the internal 

e Section 10), and set 

The reseeding of an instantiation is not requi
comsuming application and implementation rform this process. Reseeding 
wil dorandom bits. Reseeding may be: 

• 

m 

•  sufficient entropy is available).  

If a reseed capability is not available, a new 
Section 9.1).  

The reseed function: 

2. Obtains entropy input with sufficient th, and 

Let 
max_ length

The following or an equivalent process shall

Input from a consuming application for re
1) state_handle: A pointer or index that

This value was returned from the inst
2) additional_input: An optional input. e additional_input 

9. initial_working_state = Instantiate_algorithm (ent
personalization_string).  

 Get a state_handle for a currently empty internal state. If an unused internal state 
cannot be found, return an ERROR_FLAG. 

 Set the internal state indicated by state_handle to the initial values f
state (i.e., set the working_state to the values returned as initial_working_state in 
step 9 and any other values required for the working_state (se
the administrative information to the appropriate values (e.g., the values of 
security_strength and the prediction_resistance_flag). 

12. Return SUCCESS and state_handle. 
9.2 Reseeding a DRBG Instantiation 

red, but is recommended whenever a 
are able to pe

l insert additional entropy into the generation of pseu

explicitly requested by a consuming application,  

• performed when prediction resistance is requested by a consuming application, 

• triggered by the generate function when a predetermined number of pseudorando
outputs have been produced or a predetermined number of generate requests have 
been m d of the seedlife), or  ade (i.e., at the en

triggered by external events (e.g., whenever

DRBG instantiation may be created (see 

1. Checks the validity of the input parameters, 

 entropy to support the security streng

3. Using the reseed algorithm, combines the current working state with the new 
entropy input and any additional input to determine the new working state. 

working_state be the working state for the particular DRBG, and let min_length and 
 be defined for each DRBG (see Section 10). 

 be used to reseed the DRBG instantiation. 

seeding: 
 indicates the internal state to be reseeded. 
antiate function specified in Section 9.1. 
The maximum length of th
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e less than 
value specified for the given DRBG (see Section 10). If 

Req
 

put 

tropy. The maximum length of the 
shall be less than or equal to the 

selected DRBG (see Section 10). 

and 

 will indicate SUCCESS or 
an ERROR. 

Info
Rep

Reseed
and 

, obtain the current internal state. If state_handle indicates an 
sed internal state, return an ERROR_FLAG. 

dditional_input_length, return an 

. 

 

(max_additional_input_length) is implementation dependent, but shall b
or equal to the maximum 
additional_input will never be used, then the input parameter and step 2 of the 
reseed process may be omitted, and step 5 may be modified to remove the 
additional_input from the parameter list. 

uired information not provided by the consuming application during reseeding: 
Comment: This input shall not be provided 
by the consuming application in the in
parameters. 

1. entropy_input: Input bits containing en
entropy_input is implementation dependent, but 
specified maximum length for the 

2. Internal state values required by the DRBG for reseeding for the working_state 
administrative information, as appropriate. 

Output to a consuming application after reseeding: 
1. status: The status returned from the function. The status

 
rmation retained within the DRBG boundary after reseeding: 

laced internal state values (i.e., the working_state). 

 Process: 
Comment: Get the current internal state 
check the input parameters. 

1. Using state_handle
invalid or unu

2. If the length of the additional_input > max_a
ERROR_FLAG.  

Comment: Obtain the entropy input. 

3.  (status, entropy_input) = Get_entropy_input (security_strength, min_length, 
max_length). 

4. If an ERROR is returned in step 3, return a CATASTROPHIC_ERROR_FLAG

Comment: Get the new working_state using
the appropriate reseed algorithm in Section 
10.  

5. new_working_state = Reseed_algorithm (working_state, entropy_input, 
additional_input). 

6. Replace the working_state in the internal state indicated by state_handle with the 
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7. 
9.3 G

1. Checks the validity of the input param

2. Calls the reseed function to obtain su py if the instantiation needs 
iction 

  

4. 

consuming appication.  
9.3.

Let utlen be the length of the output block of the cryptographic primitive (see Section 10).  

random bits. 

Inp
le: A pointer or index that indicates the internal state to be used. 

2. requested_number_of_bits: The num  
the generate function. The max_numb plementation 

 

 not require this parameter; however, any consuming 
application using that DRBG implem on. 

to 
RBGs that are implemented to always or never support prediction 

the application before electing to use

If prediction resistance is never provided, then the 
input parameter and step 5 of the gen ay be omitted, and step 7 may 

 

values of new_working_state obtained in step 5. 

Return SUCCESS. 
enerating Pseudorandom Bits Using a DRBG 

This function is used to generate pseudorandom bits after instantiation or reseeding. The 
generate function: 

eters. 

fficient entro
additional entropy because the end of the seedlife has been reached or pred
resistance is required; see Sections 9.3.2 and 9.3.3 for more information on 
reseeding at the end of the seedlife and on handling prediction resistance requests.

3. Generates the requested pseudorandom bits using the generate algorithm.  

Updates the working state. 

5. Returns the requested pseudorandom bits to the 
1 The Generate Function 

o

The following or an equivalent process shall be used to generate pseudo

ut from a consuming application for generation: 
1. state_hand

ber of pseudorandom bits to be returned from
er_of_bits_per_request is im

dependent, but shall be less than or equal to the value provided in Section 10 for a
specific DRBG. 

3. requested_security_strength: The security strength to be associated with the 
requested pseudorandom bits. DRBG implementations that support only one 
security strength do

entation must be aware of this limitati

4. prediction_resistance_request: Indicates whether or not prediction resistance is 
be provided. D
resistance do not require this parameter. However, the user of a consuming 
application must determine whether or not prediction resistance may be required by 

 such a DRBG implementation.  

prediction_resistance_request 
erate process m

be modified to omit the check for the prediction_resistance_request.  

If prediction resistance is always performed, then the prediction_resistance_request
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teps 7 and 8 are replaced by: 

state_handle, additional_input). 

us. 

pseudorandom_bits, working_state) = Generate_algorithm 
ts). 

eter 

5. 

on 10). 
input parameter, process step 4, 

input input parameter in step 8 may be omitted. 
Req neration: 

 uired for generation for the working_state and 

e status will indicate SUCCESS 

Inform
Rep

Ge a
ck the 

1. 

2. 

3. If  requested_security_strength > the security_strength

4.  

5. 

input parameter and step 5 may be omitted, and s

status = Reseed (

If status indicates an ERROR, then return stat

Using state_handle, obtain the new internal state. 

(status, 
(working_state, requested_number_of_bi

Note that if additional_input is never provided, then the additional_input param
in the Reseed call above may be omitted. 

additional_input: An optional input. The maximum length of the additional_input 
(max_additional_input_length) is implementation dependent, but shall be less than 
or equal to the specified maximum length for the selected DRBG (see Secti
If additional_input will never be used, then the 
step 7.4 and the additional_

uired information not provided by the consuming application during ge
1. Internal state values req

administrative information, as appropriate. 

Output to a consuming application after generation: 
1. status: The status returned from the function. Th

or an ERROR. 

2. pseudorandom_bits: The pseudorandom bits that were requested. 

ation retained within the DRBG boundary after generation: 
laced internal state values (i.e., the working_state). 

ner te Process: 
Comment: Get the internal state and che
input parameters. 

Using state_handle, obtain the current internal state for the instantiation. If 
state_handle indicates an invalid or unused internal state, then return an 
ERROR_FLAG. 

If requested_number_of_bits > max_number_of_bits_per_request, then return an 
ERROR_FLAG. 

 indicated in the internal 
state, then return an ERROR_FLAG. 

If the length of the additional_input > max_additional_input_length, then return an
ERROR_FLAG.  

If prediction_resistance_request is set, and prediction_resistance_flag is not set, 
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6. Cle

7. If r ce_request is set, then 

d the instantiation (see 

7.1 nput). 

nternal state. 

te 

m 
additional_input). 

the requested bits can be 
g

9 d_required_flag. 

9

ate_handle with 

ESS and pseudorandom_bits. 

Implementation notes

ar the reseed_required_flag. 

eseed_required_flag is set, or if prediction_resistan

Comment: Resee
Section 9.2). 

status = Reseed (state_handle, additional_i

7.2 If status indicates an ERROR, then return status. 

7.3 Using state_handle, obtain the new i

7.4 additional_input = the Null string. 

7.5 Clear the reseed_required_flag. 

Comment: Request the generation of 
pseudorandom_bits using the appropria
generate algorithm in Section 10. 

8. (status, pseudorandom_bits, new_working_state) = Generate_algorith
(working_state, requested_number_of_bits, 

9. If status indicates that a reseed is required before 
enerated, then 

.1 Set the resee

.2 Go to step 7. 

10. Replace the old working_state in the internal state indicated by st
the values of new_working_state. 

11. Return SUCC

: 

If a reseed capability is not available, then st  removed; and step 9 is 
rep

9. e 

ation that the DRBG instantiation can no longer be used. 
9.3.

Wh p
checks whether or not a reseed is required 
state (see Section 8.3 ined reseed interval for the DRBG 

eps 6 and 7 may be
laced by: 

If status indicates that a reseed is required before the requested bits can b
generated, then  

9.1 status = Uninstantiate (state_handle). 

9.2 Return an indic
2 Reseeding at the End of the Seedlife 

en seudorandom bits are requested by a consuming application, the generate function 
by comparing the counter within the internal 

) against a predeterm
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implem enerate function (see Section 9.3.1) as follows: 

_flag. 

 step 
7 would be skipped unless prediction
application. For the purposes of this e nce 
was not requested. 

c. whether a reseed is 
turned. 

d. ithm. If the status does 
generate process continues with step 10. 

e. quired, then the reseed_required_flag is set, 

f. The substeps in step 7 are executed. T
additional_input provided by the con  

e 
uired_flag is 

g. orithm is called (again) in step 8, the check of the returned status is 
p 10 is then executed.  

9.3.3 H l Resistance Requests 

Wh
resistance, the generate function specified in Section 9.3.1 checks that the instantiation 
allo e generate process); clears the 
reseed_required_flag ed in this case); executes the 

ting in a reseed and a new internal state for the instantiation; 
not 

nd continues with step 10. 
9.4 

The internal state for an instantiation may need to be “released” by erasing the contents of 
the inte

1. 

entation. This is specified in the g

a. Step 6 clears the reseed_required

b. Step 7 checks the value of the reseed_required_flag. At this time, it is clear, so
 resistance was requested by the consuming 
xplanation, assume that prediction resista

Step 8 calls the Generate_algorithm, which will check 
required. If it is required, an appropriate status will be re

Step 9 checks the status returned by the Generate_algor
not indicate that a reseed is required, the 

If the status indicates that a reseed is re
and processing continues by going back to step 7. 

he reseed function will be called; any 
suming application in the generate request

will be used during reseeding. Then the new values of the internal state are 
acquired, any additional_input provided by the consuming application in th
generate request is replaced by a Null string, and the reseed_req
cleared. 

The generate alg
made in step 9, and (presumably) ste
and ing Prediction 

en pseudorandom bits are requested by a consuming application with prediction 

ws prediction resistance requests (see step 5 of th
 (even though the flag won’t be us

substeps of step 7, resul
obtains pseudorandom bits (see step 8); passes through step 9, since another reseed will 
be required; a

Removing a DRBG Instantiation 

rnal state. The uninstantiate function: 

Checks the input parameter for validity. 

2. Empties the internal state.  

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a 
DRBG instantiation: 
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icates the internal state to be “released”. 

Ou

1.  

Inf

An

Un

2.  state_handle. 

                              
9.5 S

A DRB ues 
to operate as designed and im
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary. 
No

Errors occurring during testing 
d the DRBG re-instantiated before 

ch 

tantiations shall be tested as 

sentative fixed values and lengths of the 
ent y  (if allowed) shall be used; the value of 
the e intentionally reused during normal 
operations (either by the instantiate or the reseed functions). Error handling shall also be 

e expected results, and errors are handled 
correctly, then the instantiate function may be used to instantiate using the tested values of 

1. state_handle: A pointer or index that ind

tput to a consuming application after uninstantiation: 

status: The status returned from the function. The status will indicate SUCCESS or
ERROR_FLAG. 

ormation retained within the DRBG boundary after uninstantiation: 

 empty internal state. 

instantiate Process: 

1. If state_handle indicates an invalid state, then return an ERROR_FLAG. 

Erase the contents of the internal state indicated by

3. Return SUCCESS.                                                                                                 
elf-Testing of the DRBG  

G shall perform self testing to obtain assurance that the implementation contin
plemented (health testing). The testing function(s) within a 

te that this may require the creation and use of an instantiation for testing purposes only. 

shall be perceived as complete DRBG failures. The 
condition causing the failure shall be corrected an
requesting pseudorandom bits (also, see Section 9.6) 
9.5.1 Testing the Instantiate Function 

Known-answer tests on the instantiate function shall be performed prior to creating ea
operational instantiation. However, if several instantiations are performed in quick 
succession using the same input parameters, then the testing may be reduced to testing only 
prior to creating the first instantiation using that parameter set until such time as the 
succession of instantiations is completed. Thereafter, other ins
specified above. 

The security_strength and prediction_resistance_flag to be used in the operational 
invocation shall be used during the test. Repre

rop _input, nonce and personalization_string
entropy_input used during testing shall not b

tested, including whether or not the instantiate function handles an error from the entropy 
input source correctly. 

If the values used during the test produce th
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An . 

Kn
function and at reasonable intervals defined by the implementer. The implementer shall 

The known-answer tests  be performed for each implemented security_strength. 
Representative fixed values and lengths for the requested_number_of_bits and 

ed) and the working state of the internal state value (see Sections 
available, then each combination of 

the g shall 
be , and testing shall 
inc n order to check 
tha

e oduce the expected results, and errors are handled 
correctly, then the generate function may be used during normal operations. 

rnal 

ate of the internal state value shall be used 
e g shall also be tested, including an error in 

d 

d as follows: 

 

uld provide a capability to test the reseed function on demand. 

 implementation should provide a capability to test the instantiate function on demand
9.5.2 Testing the Generate Function 

own-answer tests shall be performed on the generate function before the first use of the 

document the intervals and provide a justification for the selected intervals.  

shall

additional_input (if allow
8.3 and 10) shall be used. If prediction resistance is 

security_strength, prediction_resistance_request and prediction_resistance_fla
tested. The error handling for each input parameter shall also be tested
lude setting the reseed_counter to meet or exceed the reseed_interval i
t the implementation is reseeded or that the DRBG is “shut down”, as appropriate.  

If th  values used during the test pr

Bits generated during health testing shall not be output as pseudorandom bits. 

An implementation should provide a capability to test the generate function on demand. 
9.5.3 Testing the Reseed Function 

A known-answer test of the reseed function shall use the security_strength in the inte
state of the instantiation to be reseeded. Representative values of the entropy_input and 
additional_input (if allowed) and the working st
(see S ctions 8.3 and 10). Error handlin
obtaining the entropy_input (e.g., the entropy_input source is broken).  

If the values used during the test produce the expected results, and errors are handle
correctly, then the reseed function may be used to reseed the instantiation. 

The reseed function may be called every time that the generate function is called if 
prediction resistance is available, and considerbly less frequently otherwise. Self-testing 
shall be performe

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above). 

2. When prediction resistance is not available in an implementation, the reseed 
function shall be tested whenever the reseed function is invoked and before the 
reseed is performed on the operational instantiation. 

An implementation sho
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a  handling is performed correctly, and the internal 
state has been zeroized.  

 9.4) and for 
e 

f a 

 user 
y allows the 

 an 

ors indicated by the 
CATASTROPHIC_ERROR_FLAG in the pseudocode), the DRBG shall not produce 

rected, 
produce 

n 

The uninstantiate function shall be tested whenever other functions are tested. Testing 
shall ttempt to demonstrate that error

9.6 Error Handling 

The expected errors are indicated for each DRBG function (see Sections 9.1 -
the derivation functions in Section 10.4. The error handling routines should indicate th
type of error. 
9.6.1 Errors Encountered During Normal Operation 

Many errors during normal operation may be caused by a consuming application’s 
improper DRBG request; these errors are indicated by “ERROR_FLAG” in the 
pseudocode. In these cases, the consuming application user is responsible for correcting 
the request within the limits of the user’s organizational security policy. For example, i
failure indicating an invalid requested security strength is returned, a security strength 
higher than the DRBG or the DRBG instantiation can support has been requested. The
may reduce the requested security strength if the organization’s security polic
information to be protected using a lower security strength, or the user shall use
appropriately instantiated DRBG. 

For catastrophic errors (i.e., those err

further output until the source of the error is corrected, and the DRBG is re-instantiated. 
9.6.2 Errors Encountered During Self-Testing 

During self-testing, all unexpected behavior is catastrophic. The DRBG shall be cor
and the DRBG shall be re-instantiated before the DRBG can be used to 
pseudorandom bits. Examples of unexpected behavior include: 

• A test deliberately inserts an error, and the error is not detected, or 

• An incorrect result is returned from the instantiate, reseed or generate function tha
was expected. 
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s 

 the consuming application’s requirements for 
 conducted in order to select an appropriate DRBG. A detailed 

D ns 

sh-
proved 

ied in Section 10.1.2. 

ach hash function is provided in 

ved hash function.  
Table 2: Definitions for Hash-Based DRBGs 

Several DRBGs are specified in this Recommendation. The selection of a DRBG depend
on several factors, including the security strength to be supported and what cryptographic 
primitives are available. An analysis of
random numbers shall be
discussion on DRBG selection is provided in Appendix G. Pseudocode examples for each 
DRBG are provided in Appendix F. Conversion specifications required for the DRBG 
implementations (e.g., between integers and bitstrings) are provided in Appendix B. 
10.1 eterministic RBGs Based on Hash Functio

A DRBG may be based on a hash function that is non-invertible or one-way. The ha
based DRBGs specified in this Recommendation have been designed to use any Ap
hash function and may be used by consuming applications requiring various security 
strengths, providing that the appropriate hash function is used and sufficient entropy is 
obtained for the seed. 

The following are provided as DRBGs based on hash functions:  

1. The Hash_DRBG specified in Section 10.1.1.  

2. The HMAC_DRBG specif

The maximum security strength that can be supported by e
SP 800-57. However, this Recommendation supports only four security strengths: 112, 
128, 192, and 256. Table 2 specifies the values that shall be used for the function 
envelopes and DRBG algorithm for each Appro

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Supported security strengths See SP 800-57 

hig thes _supported_security_strength See SP 800-57 

Ou ttpu  Block Length (outlen) 160 224 256 384 512 

Requir ropy for 
stantiate and reseed 

security_strength ed minimum ent
in

Minimum entropy input length 
(min_length) 

security_strength 

Maximum entropy input length 

(max_ length) 
≤ 235 bits 

Seed length (seedlen) for 
Hash_DRBG 

440 440 440 888 888 
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-1 SHA-224 SHA-256 SHA-384 SHA-512 SHA

Maximum personalization string ≤ 235 bits 
length 
(max_personalization_string_length) 

Maximum additional_input length 
(max_additional_input_length) 

≤ 235 bits 

max_number_of_bits_per_request ≤ 219 bits 

Number of requests between ≤ 248  
reseeds (reseed_interval) 

 

or Hash_DRBG is determined by subtracting the count field (in the 
h function input block 

SH . 
10.1

BG 
tiation and reseeding.  

xceed the desired security strength of the 
consuming application.  

l State 

 consists of: 

n bits that is updated du he DRBG. 

len bits that depends on the 

counter (reseed_counter) that indicates the number of requests for 
ince new entropy_input was obtained during instantiation 

information: 

 of the DRBG instantiation. 

b. A prediction_resistance_flag that indicates whether or not a prediction 

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the 
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or 
SHA-512 instead of SHA-224 or SHA-384, respectively, is preferred.  

The value for seedlen f
hash function specification) and one byte of padding from the has
length; in the case of SHA-1, SHA-224 and SHA 256,  = 512 - 64 - 8 = 440; for seedlen

A-384 and SHA-512, seedlen = 1024 - 128 - 8 = 888
.1 Hash_DRBG 

Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The 
Hash_DRBG requires the use of a hash function during the instantiate, reseed and 
generate functions; the same hash function shall be used in all functions. Hash_DR
uses the derivation function specified in Section 10.4.1 during instan
The hash function to be used shall meet or e

10.1.1.1 Hash_DRBG Interna

The internal_state for Hash_DRBG

1. The working_state:  

a. A value (V) of seedle ring each call to t

b. A constant C of seed

c. A 

seed. 

pseudorandom bits s
or reseeding. 

2. Administrative 

a. The security_strength
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resistance capability is required for the DRBG. 

ica
of the internal state upon which 

i.e., 
he 

n 

The instantiation of Hash_DRBG 

. The contents of the 

h function. The 
 

on are 
pro e

The tantiate algorithm for 
this . 

Inp
1. : The string of bits obtained from the entropy input source. 

pecified in Section 8.6.7. 

tion string received from the 
 used, 

The values of V and C are the crit
values 
the security of this DRBG depends (

l 

Figure 8: Hash_DRBG 

V C
reseed

counter

(O t.)p
additional 

input

Hash
Function

+

V and C are the “secret values” of t
internal state). 
10.1.1.2 Instantiation of Hash_DRBG 

Notes for the instantiate functio
specified in Section 9.1: 

requires a call to the instantiate 
function. Process step 9 of that 
function calls the instantiate 
algorithm in this section. For this 
DRBG, step 5 should be omitted.  

The values of 
highest_supported_security_strength 
and min_length are provided in Table 
2 of Section 10.1
internal state are provided in Section 
10.1.1.1. 

The instantiate algorithm: 

Let Hash_df be the hash derivation 
function specified in Section 10.4.1 
using the selected has
output block length (outlen), seed
length (seedlen) and appropriate 
security_strengths for the 
implemented hash functi

vid d in Table 2 of Section 10.1.  

 following process or its equivalent shall be used as the ins
 DRBG (see step 9 of the instantiate process in Section 9.1)

ut:  
entropy_input

2. nonce: A string of bits as s

3. personalization_string: The personaliza
consuming application. If a personalization_string will never be

If additional
input ≠ Null + +

+1

Pseudorandom BitsHash
Function

+ Counter
(From 1)

Iterate to obtain
enough bits

Hash
Function

+ Counter
(From 1)

Iterate to obtain
enough bits V reseed

counter

C ctr

C

V

|| additional
inputV ||0x02 || additional
inputV ||0x02

V

Hash
Function

0x03 || V

+
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e personalization_string. 

tal values for V, C, and reseed_counter (see 

G Instantiate Process: 
put || nonce || personalization_string. 

material, seedlen). 

 

edlen). Comment: Preceed V with a byte of 
zeros. 

unter as the initial_working_state. 
10.1.1.3 tiation 

No Section 9.2: 

tiation requires a call to the reseed function. 
 reseed algorithm specified in this section. The 

Table 2 of Section 10.1. 

unction specified in Section 10.4.1 using the 
 seedlen is provided in Table 2 of Section 10.1. 

t shall be used as the reseed algorithm for this 
cess in Section 9.2): 

nt values for V, C, and reseed_counter (see Section 

m the consuming 
pplication. If additional_input will never be provided, then step 1 may be 

Output: 
1. new_working_state

 

then step 1 may be modified to remove th

Output:  
1. initial_working_state: The ini

Section 10.1.1.1).  

Hash_DRB
1. seed_material = entropy_in

2. seed = Hash_df (seed_

3. V = seed. 

4. C = Hash_df ((0x00 || V), se

5. reseed_counter = 1. 

6. Return V, C, and reseed_co
 Hash_DRBG Instan Reseeding a

tes for the reseed function specified in 

The reseeding of a Hash_DRBG instan
Process step 5 of that function calls the
values for min_length are provided in 

The reseed algorithm: 

Let Hash_df be the hash derivation f
selected hash function. The value for

The following process or its equivalen
DRBG (see step 5 of the reseed pro

Input:  

1. working_state: The curre
10.1.1.1).  

2. entropy_input: The string of bits obtained from the entropy input source. 

3. additional_input: The additional input string received fro
a
modified to remove the additional_input. 

 
: The new values for V, C, and reseed counter.  
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Hash_DRBG 
d_material = 0x01 || V || entropy_input || additional_input. 

3. 

dlen). Comment: Preceed with a byte of all 

10.1.1.4

Notes for the generate function specified in Section 

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call 
to t te algorithm 

number_of_bits_per_request and outlen 

e value of V as well as 
r of generation requests. 

this 

eseed_counter (see Section 
0.1.1.1).  

to 

 

Outpu
tus: The status returned from the function. The status will indicate 

. returned_bits: The pseudorandom bits to be returned to the generate function. 

Reseed Process: 
1. see

2. seed = Hash_df (seed_material, seedlen). 

V = seed. 

4. C = Hash_df ((0x00 || V), see
zeros. 

5. reseed_counter = 1. 

6. Return V, C, and reseed_counter for the new_working_state. 
 Generating Pseudorandom Bits Using Hash_DRBG 

9.3: 

he generate function. Process step 8 of that function calls the genera
specified in this section. The values for max_
are provided in Table 2 of Section 10.1. 

The generate algorithm: 

Let Hash be the selected hash function. The seed length (seedlen) and the maximum 
interval between reseeding (reseed_interval) are provided inTable 2 of Section 10.1. 
Note that for this DRBG, the reseed counter is used to update th
to count the numbe

The following process or its equivalent shall be used as the generate algorithm for 
DRBG (see step 8 of the generate process in Section 9.3): 

Input:  
1. working_state: The current values for V, C, and r

1

2. requested_number_of_bits: The number of pseudorandom bits to be returned 
the generate function. 

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 3 of the 
Hash_DRBG generate process may be omitted. 

t:  
1. sta

SUCCESS, or indicate that a reseed is required before the requested 
pseudorandom bits can be generated.  

2
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new values for V, C, and reseed_counter.  

Ha
turn an indication that a reseed is 

2.1 w = Hash (0x02 || V || additional_inp

2seedlen. 

. 

 Process: 

3. new_working_state: The 

sh_DRBG Generate Process: 
1. If reseed_counter > reseed_interval, then re

required. 

2. If (additional_input ≠ Null), then do 

ut). 

2.2 V = (V + w) mod 

3. (returned_bits)  = Hashgen (requested_number_of_bits, V). 

4. H = Hash (0x03 || V). 

5. V = (V + H + C + reseed_counter) mod 2seedlen

6. reseed_counter = reseed_counter + 1. 

7. Return SUCCESS, returned_bits, and the new values of V, C, and 
reseed_counter for the new_working_state. 

Hashgen (...): 

Input:  
1. requested_no_of_bits: The number of bits to be returned. 

2.  V: The current value of V. 

Output: 
 1. returned_bits: The generated bits to be returned to the generate function. 

Hashgen

1. ⎥
⎤

⎢⎢
⎡=

bitsofnorequestedm ___ . 
⎥outlen

3. 

 W = W || wi. 

5. 

2. data = V. 

W = the Null string. 

4. For i = 1 to m 

4.1 wi = Hash (data). 

4.2

4.3 data = (data + 1) mod 2seedlen.  

returned_bits = Leftmost (requested_no_of_bits) bits of W. 

6. Return returned_bits. 
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10.1.2 

HM ces of an Approved keyed hash function, which is 
based o
Section 10.1.2.2 and the HMAC function within the Update function as the derivation 
function during instantiation and re e hash function shall be used 
through
meet or ex
of the cons

Figure 
three st
using a )
functio
HMAC
reseed 
state w
is provi
internal state after pseudorandom
gen rations in the top 
portion of the figure are only performed if 
the add
depicts the 
10.1.2.1

The internal state for HMAC_DRBG 
consist

te: 

The value V of outlen bits, 
which is updated each time 

 bits of output 
ed (where outlen is 

f Section 

b.  which 
 each 

BG generates 

dom bits 
since instantiation or reseeding. 

HMAC_DRBG (...) 

AC_DRBG uses multiple occurren
n an Approved hash function. This DRBG uses the Update function specified in 

seeding. The sam
out. The hash function used shall 

ceed the security requirements (Opt) additional input

If ≠ Null

UPDATE

uming application.  

9 depicts the HMAC_DRBG in 
ages. HMAC_DRBG is specified 
n internal function (Update . This 
n is called during the 
_DRBG instantiate, generate and 

Key V reseed
ntecou r

...

State

algorithms to adjust the internal 
hen new entropy or additional input 
ded, as well as to update the 

 bits are 
erated. The ope

itional input is not null. Figure 10 
Update function. Key V reseed

State

counter
... HMAC

V

Iterate

 HMAC_DRBG Internal State 

s of: Bi ...B0 || ... || Bi-1                          

Pseudorandom bits

UPDATEKey V reseed
counter

...

State

+ 1

additional input

V Key

1. The working_sta

a. 

another outlen
are produc
specified in Table 2 o
10.1). 

The Key of outlen bits,
is updated at least once
time that the DR
pseudorandom bits. 

c. A counter (reseed_counter) 
that indicates the number of 

Figure 9: HMAC_DRBG Generate Functionrequests for pseudoran
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rmation: 

 the “secret values” of the internal state). 

nction.

be 
sed. 

lue of Key. 

Outpu
1. 

2. 

HMAC_DRBG Update Process: 
vided_data). 

2. 

3. ), then return K and V. 

rovided_data). 

5. 

6. 

2. Administrative info

a. The security_strength of the DRBG instantiation. 

b. A prediction_resistance_flag that indicates whether or not a prediction 
resistance capability is required for the DRBG. 

The values of V and Key are the critical values of the internal state upon which the security 
of this DRBG depends (i.e., V and Key are
10.1.2.2 The Update  Function (Update) 

The Update function updates the internal 
state of HMAC_DRBG using the 
provided_data. Note that for this DRBG, 
the Update function also serves as a 
derivation function for the instantiate and 
reseed functions. 

Let HMAC be the keyed hash function 
specified in FIPS 198 using the hash 
function selected for the DRBG from 
Table 2 in Section 10.1.  

The following or an equivalent process 
shall be used as the Update fu

Figure 10: HMAC_DRBG Update Function 

 

Input:  
1. provided_data: The data to 

u

2. K: The current va

3. V: The current value of V. 

t:  
K: The new value for Key. 

V: The new value for V. 

1. K = HMAC (K, V || 0x00 || pro

V = HMAC (K, V). 

If (provided_data = Null

4. K = HMAC (K, V || 0x01 || p

V = HMAC (K, V). 

Return K and V. 
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10.1  

Notes f

The rocess 
step 9 o cified in this section. For this 

rnal 
. 

The instantiate algorithm: 

 Section 10.1.2.2. The ouput block length 
on 10.1. 

alent shall be used as the instantiate algorithm for 
 process in Section 9.1): 

its obtained from the entropy input source. 

ecified in Section 8.6.7. 

n_string: The personalization string received from the consuming 
on_string will never be used, then step 1 may be 

sonalization_string. 

  
l values for V, Key and reseed_counter (see 

n 10.1.2.1). 

HMAC_DRBG Instantiate Process: 
put || nonce || personalization_string. 

y = 0x00 00...00. Comment: outlen bits. 

Comm

Comment: Update Key and V. 

terial, Key, V). 

seed_counter as the initial_working_state. 
10.1.2.4

Notes f

The _DRBG instantiation requires a call to the reseed function. 
Process step 5 of that function calls the reseed algorithm specified in this section. The 

.2.3 Instantiation of HMAC_DRBG

or the instantiate function specified in Section 9.1: 

 instantiation of HMAC_DRBG requires a call to the instantiate function. P
f that function calls the instantiate algorithm spe

DRBG, step 5 should be omitted. The values of highest_supported_security_strength 
and min _length are provided in Table 2 of Section 10.1. The contents of the inte
state are provided in Section 10.1.2.1

Let Update be the function specified in
(outlen) is provided in Table 2 of Secti

The following process or its equiv
this DRBG (see step 9 of the instantiate

Input:  
1. entropy_input: The string of b

2. nonce: A string of bits as sp

3. personalizatio
application. If a personalizati
modified to remove the per

Output:
1. initial_working_state: The inita

Sectio

1.   seed_material = entropy_in

2. Ke

3. V = 0x01 01...01. ent: outlen bits. 

4. (Key, V) = Update (seed_ma

5. reseed_counter = 1. 

6. Return V, Key and re
 Reseeding an HMAC_DRBG Instantiation 

or the reseed function specified in Section 9.2: 

 reseeding of an HMAC
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in Table 2 of Section 10.1. 

es for V, Key and reseed_counter (see Section 

 the consuming 
 

  

Pro

2. 

eed_counter = 1. 

10.1.2.5 G ndom Bits Using HMAC_DRBG 

No  Section 9.3: 

The ion requires a 
call  Process step  the generate algorithm 
specified in this section. The values for max_number_of_bits_per_request and outlen 
are provided in Table 2 of Section 10.1. 

The generate algorithm : 

Let FIPS 198 using the hash function 
selected for the DRBG. The value for reseed_interval is defined in Table 2 of Section 
10.

 used as the generate algorithm for this 

values for min_length are provided 

The reseed algorithm: 

Let Update be the function specified in Section 10.1.2.2. The following process or its 
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of the 
reseed process in Section 9.2): 

Input:  
1. working_state: The current valu

10.1.2.1).  

2. entropy_input: The string of bits obtained from the entropy input source. 

3. additional_input: The additional input string received from
application. If additional_input will never be used, then process step 1 may be
modified to remove the additional_input. 

Output:
1. new_working_state: The new values for V, Key and reseed_counter.  

cess: 
1. seed_material = entropy_input || additional_input. 

(Key, V) = Update (seed_material, Key, V). 

3. res

4. Return V, Key and reseed_counter as the new_working_state. 
enerating Pseudora

tes for the generate function specified in

 generation of pseudorandom bits using an HMAC_DRBG instantiat
 to the generate function.  8 of that function calls

HMAC be the keyed hash function specified in 

1. 

The following process or its equivalent shall be
DRBG (see step 8 of the generate process in Section 9.3): 

Input:  

1. working_state: The current values for V, Key and reseed_counter (see Section 
10.1.2.1).  
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m bits to be returned to 
 function.  

f 

put parameter as one of the calling parameters, or if 
e implementation allows additional_input, but a given request does not 

urned_bits: The pseudorandom bits to be returned to the generate function. 

RBG Generate Process: 
tion that a reseed is 

 Null, then (Key, V) = Update (additional_input, Key, V). 

4.1 V = HMAC (Key V). 

 + 1. 

SS, returned_bits, and the new values of Key, V and 

2. requested_number_of_bits: The number of pseudorando
the generate

3. additional_input: The additional input string received from the consuming 
application. If an implementation will never use additional_input, then step 3 o
the HMAC generate process may be omitted. If an implementation does not 
include the additional_in
th
provide any additional_input, then a Null string shall be used as the 
additional_input in step 6. 

Output:  
1. status: The status returned from the function. The status will indicate 

SUCCESS, or indicate that a reseed is required before the requested 
pseudorandom bits can be generated.  

2. ret

3. new_working_state: The new values for V, Key and reseed_counter.  

HMAC_D
1. If reseed_counter > reseed_interval, then return an indica

required. 

2. If additional_input ≠

3. temp = Null. 

4. While (len (temp) < requested_number_of_bits) do: 

, 

4.2 temp = temp || V. 

5. returned_bits = Leftmost requested_number_of_bits of temp. 

6. (Key, V) = Update (additional_input, Key, V). 

7. reseed_counter = reseed_counter

8. Return SUCCE
reseed_counter as the new_working_state). 
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10.2 DRB

A block cipher DRBG i
algorithm
this Recomm
any Approve
be used by co
various level
appropriate b
length are used, and sufficient entropy is 
obtained for the seed.  
10.2.1 CT

CTR_DRBG
algorithm in 
800-38A.
key lengt
operations. The block ci
length
requirem

CTR_DRBG d using an internal 
function (
Update function. This function is called by the 
instantiate, g eed algorithms to 
adjust the
additional inp  update 
the internal s f  are 
generated. Fi _DRBG in 
three stag ed if the 
additiona p

Table 3 specifies the v
algorithm
Table 3: D

 3 
TDEA 

ES-128 AES-192 AES-256 

Gs Based on Block Ciphers 

s based on a block cipher 
. The block cipher DRBG specified in 

endation has been designed to use 
d block cipher algorithm and may 
nsuming applications requiring 

s of security, providing that the 
lock cipher algorithm and key 

Figure 11: CTR_DRBG Update Function

R_DRBG 

 uses an Approved block cipher 
the counter mode as specified in SP 

 The same block cipher algorithm and 
h shall be used for all block cipher 

pher algorithm and key 
 shall meet or exceed the security 

ents of the consuming application.  

 is specifie
Update). Figure 11 depicts the 

enerate and res
 internal state when new entropy or 

ut is provided, as well as to 
tate a ter pseudorandom bits
gure 12 depicts the CTR

es. The operations in the top portion of the figure are only perform
l in ut is not null.  

alues that shall be used for the function envelopes and DRBG 
s.  
efinitions for the CTR_DRBG 

Key A

Supported security strengths See SP 800-57 

highest_supported_security_strength See SP 800-57 

Output block length (outlen) 64 128 128 128 

Key length (keylen) 168 128 192 256 
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3 Key AES-128 AES-192 AES-256  
TDEA 

Required minimum entropy for 
instantiate and reseed 

security_strength 

Seed length (seedlen = outlen + keylen) 232 256 320 384 

If a derivation function is used:  

Minimum entropy input length 
(min _length)  

security_strength 

Maximum entropy input length 
(max _length)  

≤ 235 bits 

Maximum personalization string 
length 
(max_personalization_string_length)  

≤ 235 bits 

Maximum additional_input length 
(max_additional_input_length) 

≤ 235 bits 

If a derivation function is not used 
(full entropy is available): 

 

Minimum entropy input length 
(min _length = outlen + keylen) 

seedlen 

Maximum entropy input length 
(max _length) (outlen + keylen) 

seedlen 

Maximum personalization string 
length 
(max_personalization_string_length)  

seedlen 

Maximum additional_input length 
(max_additional_input_len

seedlen 
gth) 

max_number_of_bits_per_request ≤ 213  ≤ 219  

Number of requests between reseeds 
(reseed_interval) 

≤ 232  ≤ 248  

 

mented to use the block cipher derivation function 
d reseeding.  However, the DRBG is 

adeoff with respect  derivation 
ropy input is always available to provid ropy in

tion is optional; otherwise, the derivatio
. Table 3 provides lengths required for the entropy_input, 

The CTR_ DRBG may be imple
specified in Section 10.4.2 during instantiation an
specified to allow an implementation tr to the use of this
function. If a source for full ent e ent put 
when requested, the use of the derivation func
functon shall be used

n 
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personalization_string and 
additional_input for each case. 

 is not 

Wh
selected block cipher algorithm, 
the 
bit 
key and 8 bits of parity as 
spe
specified in SP 800-67. 
10.2.1.1

produced. 

ed. 

c. A counter 

When full entropy is available, 
and a derivation function
used by an implementation, the 
seed construction (see Section 
8.6.1) shall not use a nonce4. 

en using TDEA as the 

keys shall be handled as 64-
blocks containing 56 bits of 

cified for the TDEA engine 

 CTR_DRBG Internal 
State 

The internal state for 
CTR_DRBG consists of: 

1. The working_state: 

a. The value V of 
outlen bits, which is 
updated each time 
another outlen bits 
of output are 

b. The Key of keylen 
bits, which is 
updated whenever a 
predetermined 
number of output 
blocks are 
generat

(reseed_counter) 
that indicates the 
number of requests 

                                                 
4 The specifications in this Standard do not accommodate the special treatment required for a nonce in this 
case. 

Key V
reseed
counter

...

State

Block
Encrypt

Iterate

Bi

Pseudorandom bits

...|| Bi-1                          B0 || ... 

+

1

Figure 12: CTR-DRBG 
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 bits since instantiation or reseeding. 

on: 

 of the DRBG instantiation. 

ce_flag that indicates whether or not a prediction 
 is required for the DRBG. 

e critical values of the internal state upon which the 
ends (i.e., V and Key are the “secret values” of the internal 

pdate) 

tes the internal state of the CTR_DRBG using the 
utlen, keylen and seedlen are provided in Table 3 of 

k cipher operation in step 2.2 of the CTR_DRBG update process 
lgorithm (also see Section 10.4). 

The following or an equivalent process shall be used as the Update function. 

The data to be used. This must be exactly seedlen bits in 
h is guaranteed by the construction of the provided_data in 

eseed and generate functions. 

2. e of Key. 

3. e of V. 

Outpu
1.  value for Key. 

r V. 

CTR_D ss: 

1. 

2. < seedlen) do 

 + 1) mod 2outlen. 

block = Block_Encrypt (Key, V). 

ouput_block. 

3. dlen bits of temp. 

4 temp = temp ⊕ provided_data. 

for pseudorandom

2. Administrative informati

a. The security_strength

b. A prediction_resistan
resistance capability

The values of V and Key are th
security of this DRBG dep
state). 
10.2.1.2 The Update Function (U

The Update function upda
provided_data. The values for o
Section 10.2.1. The bloc
uses the selected block cipher a

Input:  
1. provided_data: 

length; this lengt
the instantiate, r

Key: The current valu

V: The current valu

t:  
K: The new

2. V: The new value fo

RBG Update Proce

temp = Null. 

While (len (temp) 

2.1 V = (V

2.2 output_

2.3 temp = temp || 

temp = Leftmost see

5. Key = Leftmost keylen bits of temp. 
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6. 

ey and V. 
10.2.1.3

Notes f

his 
gth 

 min _length are provided in Table 3 of Section 10.2.1. The contents of the 
 10.2.1.1. 

 

.2.1.  

tantiate 
 is the same for each case; likewise for the output from the instantiate 
. However, the process steps are slightly different (see Sections 10.2.1.3.1 

and

Input:
 obtained from the entropy input source. 

ecified in Section 8.6.7; this string shall not be 
unction is not used. 

sonalization_string: The personalization string received from the 

Ou
e inital values for V, Key, and reseed_counter (see 

.1). 
10.2.1.3 n When Full Entropy is Available for the 

nction is Not Used 

The followi pr  instantiate algorithm for this 
DRBG: 

CTR_DRBG

Comment: Ensure that the length of the 
sonalization_string is exactly seedlen 

bits. The maximum length was checked in 

V = Rightmost outlen bits of temp. 

7. Return the new values of K
 Instantiation of CTR_DRBG 

or the instantiate function specified in Section 9.1: 

The instantiation of CTR_DRBG requires a call to the instantiate function. Process 
step 9 of that function calls the instantiate algorithm specified in this section. For t
DRBG, step 5 should be omitted. The values of highest_supported_security_stren
and
internal state are provided in Section

The instantiate algorithm: 

Let Update be the function specified in Section 10.2.1.2. The output block length
(outlen), key length (keylen), seed length (seedlen) and security_strengths for the 
block cipher algorithms are provided in Table 3 of Section 10

For this DRBG, there are two cases for the processing. The input to the ins
algorithm
algorithm

 10.2.1.3.2).   

  
1. entropy_input: The string of bits

2. nonce: A string of bits as sp
present when a derivation f

3. per
consuming application. 

tput:  
1. initial_working_state: Th

Section 10.2.1
.1 The Process Steps for Instantiatio

Entropy Input, and a Derivation Fu

ng ocess or its equivalent shall be used as the

 Instantiate Process: 
1. temp = len (personalization_string). 

per
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ction 9.1, processing step 3, using Table 3 
fine the maximum length. 

ersonalization_string = personalization_string || 

n_string. 

 = 1. 

Imp

Se
to de

2. If (temp < seedlen), then p
0seedlen - temp. 

3. seed_material = entropy_input ⊕ personalizatio

4. Key = 0keylen. Comment: keylen bits of zeros. 

5. V = 0outlen. Comment: outlen bits of zeros. 

6. (Key, V) = Update (seed_material, Key, V). 

7. reseed_counter

8. Return V, Key, and reseed_counter as the initial_working_state. 

lementation note: 

 personalization_string will never be provided from the instantiate fIf a unction, then 
step

Tha
10.2 he Process Steps for Instantiation When a Derivation Function is Used 

Let Blo  
chosen

The follow  instantiate algorithm for this 
DRBG

CTR_D ss: 
d_material = entropy_input || nonce || personalization_string. 

seed_material is exactly seedlen bits. 

3.  zeros. 

, Key, V). 

Implementation note:

s 1-3 are replaced by: 

seed_material = entropy_input. 

t is, steps 1-3 collapse into the above step. 
.1.3.2 T

ck_Cipher_df be the derivation function specified in Section 10.4.2 using the
 block cipher algorithm and key size 

ing process or its equivalent shall be used as the
: 

RBG Instantiate Proce
1. see

Comment: Ensure that the length of the 

2. seed_material = Block_Cipher_df (seed_material, seedlen).  

Key = 0keylen. Comment: keylen bits of

4. V = 0outlen. Comment: outlen bits of zeros. 

5. (Key, V) = Update (seed_material

6. reseed_counter = 1. 

7. Return V, Key, and reseed_counter as the initial_working_state. 

If a personalization_string will never be provided from the instantiate function, then 
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steps 1-2 are replaced by: 

seed_material = Block_Cipher_d
10.2.1.4

Notes f

The s  function. 
Pro f th
valu

The res

Let pecified in Section 10.2.1.2. The seed length (seedlen) is 
pro

re are two cases for the processing. The input to the reseed 
e for each case; likewise for the output from the reseed algorithm. 

Input: 
r V, Key and reseed_counter (see Section 

input string received from the consuming 

ut:  
 values for V, Key, and reseed_counter.  

10.2.1.4 r the 

The following process or its equivalent shall s 
DRBG e

CT D

Ensure that the length of the 
input is exactly seedlen bits. The 

maximum length was checked in Section 
le 3 to 

seedlen - temp. 

f (entropy_input, seedlen). 
 Reseeding a CTR_DRBG Instantiation 

or the reseed function specified in Section 9.2: 

 re eeding of a CTR_DRBG instantiation requires a call to the reseed
cess step 5 o at function calls the reseed algorithm specified in this section. The 
es for min _length are provided in Table 3 of Section 10.2.1. 

eed algorithm: 

Update be the function s
vided in Table 3 of Section 10.2.1.  

For this DRBG, the
algorithm is the sam
However, the process steps are slightly different (see Sections 10.2.1.4.1 and 
10.2.1.4.2).   

 
1. working_state: The current values fo

10.2.1.1).  

2. entropy_input: The string of bits obtained from the entropy input source. 

3. additional_input: The additional 
application. 

Outp
1. new_working_state: The new
.1 The Process Steps for Reseeding When Full Entropy is Available fo

Entropy Input, and a Derivation Function is Not Used 

 be used as the reseed algorithm for thi
 (se  step 5 of the reseed process in Section 9.2):  

R_ RBG Reseed Process: 
1. temp = len (additional_input). 

Comment: 
additional_

9.2, processing step 2, using Tab
define the maximum length. 

2. If (temp < seedlen), then additional_input = additional_input || 0
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 entropy_input ⊕ additional_input. 

4. 

w_working_state. 

Imp

3. seed_material =

(Key, V) = Update (seed_material, Key, V). 

5. reseed_counter = 1. 

6. Return V, Key and reseed_counter as the ne

lementation note: 

dditional_input will never be provided from the reseed function, then steps 1-3 are 
laced by:  

If a
rep

al = entropy_input. 

Tha
10.2.1.4.2 g When a Derivation Function is Used 

Let
cho

The following process or its equivalent shall be used as the reseed algorithm for this 
DRBG (see step 5 of Section 9.2):  

CT D
1. ial = entropy_input || additional_input. 

2. l = Block_Cipher_df (seed_material, seedlen).  

y, V) = Update (seed_material, Key, V). 

Implementation note

seed_materi

t is, steps 1-3 collapse into the above step. 
 The Process Steps for Reseedin

 Block_Cipher_df be the derivation function specified in Section 10.4.2 using the 
sen block cipher algorithm and key size. 

R_ RBG Reseed Process: 
seed_mater

Comment: Ensure that the length of the 
seed_material is exactly seedlen bits. 

seed_materia

3. (Ke

4. reseed_counter = 1. 

5. Return V, Key, and reseed_counter as the new_working_state. 

: 

 (entropy_input, seedlen). 
10.2.1.5 

Notes for the generate function specified in S

The generation of pseudorandom bits usi
call to the generate function. Process step
algorithm specified in this section. The v _per_request 
and

If additional_input will never be provided from the reseed function, then steps 1-2 
become: 

seed_material = Block_Cipher_df
Generating Pseudorandom Bits Using CTR_DRBG 

ection 9.3: 

ng a CTR_DRBG instantiation requires a 
 8 of that function calls the generate 
alues for max_number_of_bits

 max_additional_input_length, and outlen are provided in Table 3 of Section 
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10.

For g. The input to the generate 
algo h case; likewise for the output from the generate 
algo cess steps are slightly different (see Sections 10.2.1.5.1 
and .

function specified in Section 10.2.1.2, and let Block_Encrypt be 

Input: 
r V, Key, and reseed_counter (see Section 

nput string received from the consuming 

 = 0seedlen. 

atus will indicate 
SUCCESS, or indicate that a rese
pseudorandom bits can be genera

 function. 

d reseed_counter.  

10.2.1.5 r Generating Pseudorandom BitsWhen a Derivation 

or its equivalent shall be used as the generate algorithm for this 
e generate process in Section 9.3.3):  

1.  that a reseed is 

nsure that the length of the 
e 

tion 

 of 
the additional input is < seedlen, pad with 

2.1.  

 this DRBG, there are two cases for the processin
rithm is the same for eac
rithm. However, the pro

 10 2.1.5.2).   

Let Update be the 
the function specified in Section 10.4.2. The seed length (seedlen) and the value of 
reseed_interval are provided in Table 3 of Section 10.2.1.  

 
1. working_state: The current values fo

10.2.1.1).  

2. requested_number_of_bits: The number of pseudorandom bits to be returned 
to the generate function. 

3. additional_input: The additional i
application. If additional_input will never be allowed, then step 3 becomes: 

additional_input

Output:  
1. status: The status returned from the function. The st

ed is required before the requested 
ted.  

2. returned_bits: The pseudorandom bits returned to the generate

3. working_state: The new values for V, Key, an

.1 The Process Steps fo
Function is Not Used for the DRBG Implementation 

The following process 
DRBG (see step 8 of th

CTR_DRBG Generate Process: 
If reseed_counter  > reseed_interval, then return an indication
required. 

2. If (additional_input ≠ Null), then 

Comment: E
additional_input is exactly seedlen bits. Th
maximum length was checked in Sec
9.3.3, processing step 4, using Table 3 to 
define the maximum length. If the length
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zero bits. 

hile (len (temp) < requested_number_of_bits) do: 

y, V) = Update (additional_input, Key, V). 

8. counter 

10.2.1.5 tion 

2.1 additional_input = Block  

2.2 (Key, V) = Update (addi

Else additional_input = 0seedlen. 

3. temp = Null. 

2.1 temp = len (additional_input). 

2.2 If (temp < seedlen), then  
additional_input = additional_input || 0seedlen - temp. 

2.3 (Key, V) = Update (additional_input, Key, V). 

Else additional_input = 0seedlen. 

3. temp = Null. 

4. W

4.1 V = (V + 1) mod 2outlen. 

4.2 output_block = Block_Encrypt (Key, V). 

4.3 temp = temp || output_block. 

5. returned_bits = Leftmost requested_number_of_bits of temp. 

Comment: Update for backtracking 
resistance. 

6. (Ke

7. reseed_counter = reseed_counter + 1. 

Return SUCCESS and returned_bits; also return Key, V, and reseed_
as the new_working_state. 

.2 The Process Steps for Generating Pseudorandom BitsWhen a Deriva
Function is Used for the DRBG Implementation 

The Block_Cipher_df is specified in Section 10.4.2 and shall be implemented using the 
chosen block cipher algorithm and key size. 

The following process or its equivalent shall be used as generate algorithm for this 
DRBG (see step 8 of the generate process in Section 9.3.3):  

CTR_DRBG Generate Process: 

1. If reseed_counter  > reseed_interval, then return an indication that a reseed is 
required. 

2. If (additional_input ≠ Null), then 

_Cipher_df (additional_input, seedlen).

tional_input, Key, V). 
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4. While (len (temp) < requested_nu its) do: 

4.1 =

4.2 pt (Key, V). 

4.3 tem

5. retu emp. 

Comment: Update for backtracking 
resistance. 

7. ter + 1. 

8. r  Key, V, and reseed_counter 

mber_of_b

V  (V + 1) mod 2outlen. 

output_block = Block_Encry

p = temp || output_block. 

rned_bits = Leftmost requested_number_of_bits of t

6. (Key, V) = Update (additional_input, Key, V). 

reseed_counter = reseed_coun

Retu n SUCCESS and returned_bits; also return
as the new_working_state. 
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10.3 lems 

A DRBG   ad ntage of number theoretic problems (e.g., the 
discrete i erator’s properties of randomness 
and/or un i e difficulty of finding a solution to that 
problem. s ed on the elliptic curve discrete logarithm 
probl .
10.3.1 Dual Elliptic Curve Deterministic RB

Dual_EC_ , sometimes known as the 
“ellip ven points P and Q on an elliptic 
curve  

Dual
generatio m strings by performing scalar multiplications on two 
points in an elliptic curve group, where the curve is defined over a field approximately 2m 
in size. For all the NIST curves given in this Recommendation, m ≥ 256. Figure 13 depicts 
the Dual_EC_DRBG. 

The instantiation of this DRBG requires the 
selection of an appropriate elliptic curve and 
curve points specified in Appendix A.1 for the 
desired security strength. The seed used to 
determine the initial value (s) of the DRBG shall 
have entropy that is at least security_strength bits. 
Further requirements for the seed are provided in 
Section 8.6. This DRBG uses the derivation 
function specified in Section 10.4.1 during 
instantiation and reseeding. 

Backtracking resistance is inherent in the 

Deterministic RBG Based on Number Theoretic Prob

 can be designed to take va
logar thm problem). If done correctly, such a gen
pred ctability will be assured by th
 Thi  section specifies a DRBG bas

em  
G (Dual_EC_DRBG) 

DRBG is based on the following hard problem
tic curve discrete logarithm problem” (ECDLP): gi
 of order n, find a such that Q = aP.  

_EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the 
n of outlen-bit pseudorando

Figure 14: Dual_EC_DRBG (...) 
Backtracking Resistance

Figure 13: Dual_EC_DRBG 
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ure 14, 

y the extraction of the x coordinate for the resulting point and for the random 
ing a line in the direction 

of the arrow is the normal operation; inverting the direction implies the ability to solve the 
 

ign, as knowledge of S1 does not allow an 
P 

lues that shall be used for the envelope and algorithm for each 
curve. Complete specifications for each curve are provided in Appendix A.1. Note that all 
curves can be instantiated at a security strength lower than its highest possible security 
strength. For example, the highest security strength that can be supported by curve P-384 is 
192 bits; however, this curve can alternatively be instantiated to support only the 112 or 
128-bit security strengths). 
Table 4: Definitions for the Dual_EC_DRBG 

 P-256 P-384 P-521 

algorithm, even if the internal state is compromised. As shown in Fig
Dual_EC_DRBG generates a seedlen-bit number for each step i = 1,2,3,…, as follows: 
 Si = ϕ( x(Si−1 ∗ P) ) 
 Ri = ϕ( x(Si ∗ Q) ). 
Each  arrow  in the figure represents an Elliptic Curve scalar multiplication operation, 
followed b
output Ri,  followed by truncation to produce the output.  Follow

ECDLP for that specific curve. An adversary’s ability to invert an arrow in the figure
implies that the adversary has solved the ECDLP for that specific elliptic curve.  
Backtracking resistence is built into the des
adversary to determine S0 (and so forth) unless the adversary is able to solve the ECDL
for that specific curve.  In addition, knowledge of R1 does not allow an adversary to 
determine S1 (and so forth) unless the adversary is able to solve the ECDLP for that 
specific curve.    

Table 4 specifies the va

Supported security strengths See SP 800-57 
Size of the base field (in bits) 256 384 521 

highest_supported_ 
security_strength 

See SP 800-57 

Output block length (max_outlen 240 368 504  = 
largest multiple of 8 less than (size 
of the base field) - (13 + log2 (the 
cofactor)) 

Required minimum entropy for 
instantiate and reseed  

security_strength 

Minimum entropy input length 
(min_length)  

security_strength 

Maximum entropy input length 
(max _length) 

≤ 213 bits 
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P-521  P-256 P-384 

Maximum personalization string ≤ 213 bits 
length 

_length) (max_personalization_string

Maximum additional input length 
(max_additional_input_length)  

≤ 213 bits 

Seed length (seedlen) 2 × security_strength 

Appropriate hash functions SHA-1, SHA-
224, SHA-256, 

SHA-384, SHA-
512 

SHA-224, SHA-
256, SHA-384, 
SHA-512 

SHA-256, 
SHA-384
SHA-512

, 
 

max_number_of_bits_per_request max_outlen × reseed_interval 
Number of blocks between 
reseeding (reseed_

≤ 2
interval) 

32 blocks 

 
10.3.1.1 Dual_EC_DRBG Internal State  

The internal state for Dual_EC_DRBG consists of: 

1. The working_state: 

a. A value (s) that determines the current position on the curve. 

b. The elliptic curve domain param seedlen,  p, a  where seed e 
a and b are two field elements th

 the order of the point G. If ed by an 
hese parameters need not be present in the working_ .  

nts P and Q on the curve; the generati ified in FIPS 186-
he chosen curve will be used as P. If only one curve will be used by an 

oints nee t be present in orking_state. 

) that indicates the number of blocks of random 
_EC_DRBG since the initial seeding or the previous 

reseeding. 

on: 

h provided by the instance of the DRBG,  

 that indicates whether prediction resistance is 

the internal state upon which the security of this 
DRBG depends (i.e., s is the “secret value” of the internal state). 

eters ( , b, n), len is th
length of the seed ; 
the curve, and n is

at define the equation of 
only one curve will be us

implementation, t state

c. Two poi
3 for t

ng point G spec

implementation, these p

d. A counter (block_counter
produced by the Dual

d no the w

2. Administrative informati

a. The security_strengt

b. A prediction_resistance_flag
required by the DRBG. 

The value of s is the critical value of 
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10.3.1.2 Instantiation of Dual_EC_DRBG 

specified in Section 9.1:  

RBG requires a call to the instantiate function. 
calls the instantiate algori is section.  

antiate function, the following step shall be performed to 
ate curve if multiple curves are a

y_strength n S lect t t 
available curve that has a s  ≥ th.  

The values for seedlen, p, a, b, n, e. 

fault values be us
tion may use dif d that they 

s evidenced by the use of the procedure specified in Appendix 
rocedure described in Appendix A.2.2. 

The values for highest_supported_security_strength and min_length are determined by 
tion 10.3.1). 

 derivation function specified in Section 10.4.1 using an 
n from Table 4 in Section 10.3.1. Let seedlen be the 

app

The l
this DR

Input:

2. 

3. suming 

Outpu

1. t value for the initial_working_state. 

Dual_EC_DRBG Instantiate Process:

that 
bits, 

) bits in length. 

Notes for the instantiate function 

The instantiation of Dual_EC_D
Process step 9 of that function 

In process step 5 of the inst

thm in th

select an appropri vailable.  

5. Using the securit  and Table 4 i
ecurity strength

P, Q are determined by that curv

ection 10.3.1, se
 security_streng

he smalles

It is recommended that the de
A.1. However, an implementa

ed for P and Q as given in Appendix 
ferent pairs of points, provide

are verifiably random, a
A.2.1 and the self-test p

the selected curve (see Table 4 in Sec

The instantiate algorithm : 

Let Hash_df be the hash
appropriate hash functio

ropriate value from Table 4.  

 fo lowing process or its equivalent shall be used as the instantiate algorithm for 
BG (see step 9 of the instantiate process in Section 9.1): 

  
1. entropy_input: The string of bits obtained from the entropy input source. 

nonce: A string of bits as specified in Section 8.6.7. 

personalization_string: The personalization string received from the con
application. 

t:  

s: The initial secre

2. block_counter: The initialized block counter for reseeding. 

 
1. seed_material = entropy_input  || nonce ||  personalization_string. 

Comment: Use a hash function to ensure 
the entropy is distributed throughout the 
and s is m (i.e., seedlen
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eedlen).  

10.3

No

The of 
tha
provide

The

he Dual_EC_DRBG 

lue of the secret parameter in the working_state.  

ing 

. 

: The re-initialized block counter for reseeding.  

Dual_EC_

multiple of 8.   

d_material = pad8 (s) || entropy_input  || additional_input_string. 

e new_working_state. 

Implem

2. s = Hash_df (seed_material, s

3.  block_counter = 0. 

4. Return s, and block_counter for the initial_working_state. 
.1.3 Reseeding of a Dual_EC_DRBG Instantiation 

tes for the reseed function specified in Section 9.2: 

 reseed of Dual_EC_DRBG requires a call to the reseed function. Process step 5 
t function calls the reseed algorithm in this section. The values for min _length are 

d in Table 4 of Section 10.3. 1. 

 reseed algorithm : 

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an 
appropriate hash function from Table 4 in Section 10.3. 1.  

The following process or its equivalent shall be used to reseed t
process after it has been instantiated (see step 5 of the reseed process in Section 9.2): 

Input:  
1. s: The current va

2. entropy_input: The string of bits obtained from the entropy input source. 

3. additional_input: The additional input string received from the consum
application. 

Output:  
1. s: The new value of  the secret parameter in the new_working_state

block_counter2. 

DRBBG Reseed Process: 
 pad8 Comment: returns a copy of s padded 

on the right with binary 0’s, if necessary, to a 

1. see

2. s = Hash_df (seed_material, seedlen). 

3. block_counter = 0. 

4. Return s and block_counter for th

entation notes: 

If an implementation never allows additiona
follows : 

l_input, then step 1 may be modified as 
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10.3.1.4 dom Bits Using Dual_EC_DRBG 

Notes f

_EC_DRBG instantiation requires a 
unction calls the generate algorithm 
r_of_bits_per_request and 

n should be set to the maximum value as 
 However, an implementation may set outlen to any multiple of 8 

tes. 

The generate algorithm

l 
ovided in Table 4. 

The l

nary 

b. tstring, in_len, out_len) inputs a bitstring of in_len bits, returning 
ring consisting of the leftmost out_len bits of bitstring.  If in_len < out_len, 

 the result 

ine coordinates. 
 to represent points internally using other 

coordinate systems; for instance, 
case, a point shall be translated b

d. ϕ (x) maps field elements to non- , taking the bit vector 
sion of 

eps 6 and 7 of the generate process 
e field representation of the curve points. In keeping with 

ll be associated with 

| | | |

   Z:    cm-12   +  . . . + c22   +  c12  +  c0      Z ; 

 Generating Pseudoran

or the generate function specified in Section 9.3: 

The generation of pseudorandom bits using a Dual
call to the generate function. Process step 8 of that f
specified in this section. The values for max_numbe
max_outlen are provided in Table 4 of Section 10.3.1. outlen is the number of 
pseudorandom bits taken from each x-coordinate as the Dual_EC_DRBG steps. For 
performance reasons, the value of outle
provided in Table 4.
bits less than or equal to max_outlen. The bits that become the Dual_EC_DRBG 
output are always the rightmost bits, i.e., the least significant bits of the x-coordina

: 

Let Hash_df be the hash derivation function specified in Section 10.4.1 using an 
 Table 4 in Section 10.3.1. The value of reseed_intervaappropriate hash function from

is also pr

 fo lowing are used by the generate algorithm: 

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with bi
0’s, if necessary, to a multiple of 8. 

Truncate (bi
a st
the bitstring is padded on the right with (out_len - in_len) zeroes, and
is returned.  

c. x(A) is the x-coordinate of the point A on the curve, given in aff
An implementation may choose

when efficiency is a primary concern. In this 
ack to affine coordinates before x() is applied. 

negative integers
representation of a field element and interpreting it as the binary expan
an integer.  

The precise definition of ϕ(x) used in st
below depends on th
the convention of FIPS 186-2, the following elements wi
each other (note that m = seedlen): 

   B:    c| |m-1  cm-2   ...   c1  c0   ,  a bitstring,  with  cm-1  being leftmost  
m-1 2 1 ∈
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0   mod p   ∈  GF( p )   ; 

erted to the integer Z or 

d to 

ut: The additional input string received from the consuming 

rned from the function. The status will indicate 
 required before the requested 

2. ts to be returned to the generate function. 

4. 

Dual_E enerate Process: 

1. 

   Fa: cm-12 m-1  +  . . . + c222  +  c121 +  c

Thus, any field element x of the form Fa will be conv
bitstring B, and vice versa, as appropriate. 

e. * is the symbol representing scalar multiplication of a point on the curve. 

The following process or its equivalent shall be used to generate pseudorandom bits 
(see step 8 of the generate process in Section 9.3): 

Input:  

1. working_state: The current values for s, seedlen, p, a, b, n, P, Q, and a 
reseed_counter (see Section 10.3.1.1).  

2. requested_number_of_bits: The number of pseudorandom bits to be returne
the generate function. 

3. additional_inp
application. 

Output:  
1. status: The status retu

SUCCESS, or an indication that a reseed is
pseudorandom bits can be generated.  

returned_bits: The pseudorandom bi

3. s: The new value for the secret parameter in the new_working_state. 

block_counter: The updated block counter for reseeding. 

C_DRBG G

Comment: Check whether a reseed is 
required. 

If >⎟⎟
⎞

⎜⎜
⎛

⎥
⎤

⎢
⎡+

bitsofnumberrequestedcounterblock ____ reseed_interval, then 
⎠⎝ ⎥⎢ outlen

return an indication that a reseed is required. 

Comment: If additional_input is Null, set to 

2. 

pad8 (additional_input_string), seedlen). 

bits, 
me: 

3. temp = the Null string. 

seedlen zeroes; otherwise, Hash_df to 
seedlen bits. 

If (additional_input_string = Null), then additional_input = 0    

Else   additional_input = Hash_df (

Comment:  Produce requested_no_of_
outlen bits at a ti
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4 

5.  t  
ed integer. To be precise, t should 

ffect 

  = ϕ( x(s ∗ Q)). Comment: r is a seedlen-bit number.  

9. a ent:  seedlen zeroes; 

11.

len (temp) < requested_number_of_bits), then go to step 5. 

s). 

14.

10.4 A

Deriva  instantiation and 
reseedi  throughout a 
bits ethod is based on hash functions (see Section 
10.4.1), and the other method is based on blo block 
cipher derivation function uses a Block_Cip ction 
10.4.3. 
10.4.1 on Function Using a Hash Function (Hash_df) 

This deriva  Dual_EC_DRBG specified 
Section 10.1.1 and 10.3.1, respectively. The hash
string and returns the requested number of b  
the DRBG, and let outlen be its output length

The following or an equivalent process ber of 
bits.  

Input:  
1. input_string: The string to be hashed

2. ber of bits to be returned by Hash_df. The 
ber_of_bits) is implementation dependent, but shall be 

i = 0. 

 = s ⊕ additional_input.   Comment: t is to be interpreted as a seedlen-
bit unsign
be reduced mod n; the operation * will e
this.  

6. s = ϕ( x(t ∗ P)).    Comment: s is a seedlen-bit number. 

7. r

8. temp = temp || (rightmost outlen bits of r ). 

dditional_input=0  Comm
additional_input_string is added only on the 
first iteration. 

10. block_counter = block_counter + 1. 

 i = i + 1. 

12. If (

13 returned_bits = Truncate (temp, i × outlen, requested_number_of_bit

 Return SUCCESS, returned_bits, and s, and block_counter for the 
new_working_state. 

uxilliary Functions 

tion functions are internal functions that are used during DRBG
ng to either derive internal state values or to distribute entropy

tring. Two methods are provided. One m
ck cipher algorithms (see 10.4.2). The 
her_Hash function that is specified in Se

Derivati

tion function is used by the Hash_DRBG and
-based derivation function hashes an input 

its. Let Hash (...) be the hash function used by
.  

shall be used to derive the requested num

. 

no_of_bits_to_return: The num
maximum length (max_num
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or equal to (255 × outlen). no_of_bits_to_return is represented as a 32-bit 

Output:  
1. status: The status returned from Hash

ERROR_FLAG. 

2. 

Hash_

1. If then return an ERROR_FLAG. 

2. 

3. 

less than  
integer. 

_df. The status will indicate SUCCESS or 

requested_bits : The result of performing the Hash_df. 

df Process: 

no_of_bits_to_return > max_number_of_bits, 

temp = the Null string. 

⎥⎥⎢ outlen
⎤

⎢
⎡=

returntobitsofnolen ____ . 

4. -bit binary value representing the integer "1". 

5. 

turn 

). 

r + 1. 

ipher_Hash be the function specified in Section 10.4.3. Let outlen be its output 
lock cipher algorithms, and 

s. 

no_of_bits_to_return: The number of bits to be returned by Block_Cipher_df. The 
aximum length (max_number_of_bits) is 512 bits for the currently approved 

s. 

Output: 

counter = an 8

For i = 1 to len do 

Comment : In step 5.1, no_of_bits_to_re
is used as a 32-bit string. 

5.1 temp = temp || Hash (counter || no_of_bits_to_return || input_string

5.2 counter = counte

6. requested_bits = Leftmost (no_of_bits_to_return) of temp. 

7. Return SUCCESS and requested_bits. 
10.4.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df) 

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. Let 
Block_C
block length, which is a multiple of 8 bits for the Approved b
let keylen be the key length. 

The following or an equivalent process shall be used to derive the requested number of 
bits. 

Input: 
1. input_string: The string to be operated on. This string shall be a multiple of 8 bit

2. 
m
block cipher algorithm

1. status: The status returned from Block_Cipher_df. The status will indicate 
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2. _bits : The result of performing the Block_Cipher_df. 

her_df Process: 

bitstring represention of 
the integer resulting from len (input_string)/8. 

return/8. Comment : N is the bitstring represention of 
the integer resulting from 
number_of_bits_to_return/8. N shall be 
represented as a 32-bit integer. 

string length and the 

input_string. 

3. S = L || N || input_string || 0x80. 

 necessary. 

4. W ile 

ting value. 

ment : i shall be represented as a 32-bit 

. Comment: The 32-bit integer represenation of 

8.2 temp = temp || Block_Cipher_Hash (K, (IV || S)). 

i = i + 1. 

9. 

10. mp. 

p = the Null string. 

SUCCESS or ERROR_FLAG. 

requested

Block_Cip

1. If (number_of_bits_to_return > max_number_of_bits), then return an 
ERROR_FLAG. 

2. L = len (input_string)/8. Comment: L is the 

L shall be represented as a 32-bit integer. 

3. N = number_of_bits_to_

Comment: Prepend the 
requested length of the output to the 

Comment : Pad S with zeros, if

h ) m ) ≠ 0, S = S || 0x00.  (len (S od outlen

Comment : Compute the star

5. temp = the Null string. 

6. i = 0. Com
integer, i.e., len (i) = 32.  

7. K = Leftmost keylen bits of 0x00010203...1F. 

8. While len (temp) < keylen + outlen, do 

8.1 IV = i || 0outlen - len (i)

i is padded with zeros to outlen bits. 

8.3 

Comment: Compute the requested number of 
bits. 

K = Leftmost keylen bits of temp. 

X = Next outlen bits of te

11. tem
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12. ts_to_return, do 

. 

14. and requested_bits.  
10.4

The Block_Encrypt pseudo-function is used  
Blo
Recommendation, but has 

Block_Encrypt: A basic encryption ope
algorithm. The function call is: 

output_block = Block_E

For TDEA, the basic encryption operatio n (see 
SP 800-67); for AES, the basic encryptio called the cipher operation (see 

ration is equivalent to an encryption operation on a 
single block of data using the ECB mode

For e len h of the output block of the 
block cipher algorithm

The following or an equivalent process shall f 
bits

Inp

1. Key: The key to be used for the block cipher opeation. 

data_to_hash 
ranteed by steps 4 and 8.1 in Section 

Output: 

1. ipher_Hash operation. 

Block_Ciph
1. chaining_value = 0outlen. Comm  

2.  n = len (data_to_hash)/outlen. 

outlen bits each forming block1 to blockn.  

 ⊕ blocki .  

 While len (temp) < number_of_bi

12.1 X = Block_Encrypt (K, X). 

12.2 temp = temp || X

13. requested_bits = Leftmost number_of_bits_to_return of temp. 

 Return SUCCESS 
.3    Block_Cipher_Hash Function 

 for convenience in the specification of the
ck_Cipher_Hash function. This function is not specifically defined in this 

the following meaning: 

ration that uses the selected block cipher 

ncrypt (Key, input_block) 

n is called the forward cipher operatio
n operation is 

FIPS 197). The basic encryption ope
. 

 the Block_Cipher_Hash function, let outlen be th gt
 to be used. 

 be used to derive the requested number o
.  

ut: 

2. data_to_hash: The data to be operated upon. Note that the length of 
must be a multiple of outlen. This is gua
10.4.2. 

output_block: The result to be returned from the Block_C

er_Hash Process: 
ent: Set the first chaining value to outlen zeros.

3. Split the data_to_hash into n blocks of 

4. For i = 1 to n do 

4.1 input_block =   chaining_value
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_block). 

5. 

6.  

4.2 chaining_value = Block_Encrypt (Key, input

output_block = chaining_value. 

Return output_block.    
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11 As

A u phic purposes requires assurance that the generator 
actu
unpredictable bits. The user needs 
assurance that the design of the generator, 
its implementation and its use to support 
cryptographic services are adequate to 
protect the user's information. In addition, 
the user requires assurance that the 
generator continues to operate correctly. 
The assurance strategy for the DRBGs in 
this Recommendaion is depicted in Figure 
15. 

The design of each DRBG in this 
Recommendation has received an 
evaluation of its security properties prior to 
its selection for inclusion in this 
Recommendation.  

An implementation shall be validated for 
conformance to this Recommendation by a NVLAP accredited laboratory (see Section 
11.2). The consuming application or cryptographic service that uses a DRBG should also 
be validated and periodically tested for continued correct operation. However, this level of 
testing is outside the scope of this Recommendation. Such validations provide a higher 
level of assurance that the DRBG is correctly implemented. Validation testing for DRBG 
processes consists of testing whether or not the DRBG process produces the expected 
result, given a specific set of input parameters (e.g., entropy input).   

Health tests on the DRBG shall be implemented within a DRBG boundary or sub-
boundary in order to determine that the process continues to operate as designed and 
implemented. See Section 11.3 for further information. 

A cryptographic module containing a DRBG shall be validated (see FIPS 140-2). The 
consuming application or cryptographic service that uses a DRBG should also be validated 
and periodically tested for continued correct operation. However, this level of testing is 
outside the scope of this Recommendation. 

Note that any entropy input used for testing (either for validation testing or health testing) 
may be publicly known. Therefore, entropy input used for testing shall not knowingly be 
used for normal operational use. 
11.1 Minimal Documentation Requirements 

This Recommendation requires the development of a set of documentation that will 
provide assurance to users and (optionally) validators that the DRBGs in this 

surance 

ser of a DRBG for cryptogra
ally produces random and 

Figure 15: DRBG Assurance Strategy 
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ave been implemented properly. Much of this documentation may be 
anual. This documentation shall consist of the following as a 

or obtaining entropy input. 

has been designed to permit implementation 

.g., CTR_DRBG, Dual_EC_DRBG), and the 
 AES-128, SHA-256). 

upported by the implementation. 

e implemention (e.g., prediction resistance, the 

In the case of the CTR_DRBG, indicate whether a derivation function is provided. 
ot used, documentation shall clearly indicate that the 
 used when full entropy input is available. 

n Validation Testing 

all 

ptionally perform other self-tests for DRBG 

n-answer-tests (see Section 11.3.2) shall not be output 

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error 
e, and 

Recommendation h
placed in a user’s m
minimum: 

• Document the method f

• Document how the implementation 
validation and health testing. 

• Document the type of DRBG (e
cryptographic primitives used (e.g.,

• Document the security strengths s

• Document features supported by th
available elliptic curves, etc.). 

• 
If a derivation function is n
implementation can only be

• Document any support functions other than health testing. 
11.2 Implementatio

A DRBG process shall be tested for conformance to this Recommendation. A DRBG sh
be designed to be tested to ensure that the product is correctly implemented. A testing 
interface shall be available for this purpose in order to allow the insertion of input and the 
extraction of output for testing.  

Implementations to be validated shall include the following: 

• Documentation specified in Section 11.1. 

• Any documentation or results required in derived test requirements. 
11.3 Health Testing 

11.3.1 Overview 

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to 
function properly.  Self-tests of the DRBG processes shall be performed as specified in 
Section 9.5. A DRBG implementation may o
functionality in addition to the tests specified in this Recommendation. 

All data output from the DRBG boundary shall be inhibited while these tests are 
performed. The results from know
as random bits during normal operation.  

indicator. The DRBG shall not perform any DRBG operations while in the error stat
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it the 
see Section 9.6). 

11.3

Kn n est 
involve ta for which the correct output is already known and 
determ he 
test i
shall enter an error state and output an 

The e  be 
per m

 

no pseudorandom bits shall be output when an error state exists. When in an error state, 
user intervention (e.g., power cycling, restart of the DRBG) shall be required to ex
error state (

.2 Known Answer Testing  

ow -answer testing shall be conducted as specified in Section 9.5. A known-answer t
s operating the DRBG with da
ining if the calculated output equals the expected output (the known answer).  T

 fa ls if the calculated output does not equal the known answer. In this case, the DRBG 
error indicator (see Section 9.6). 

 g neralized known-answer testing is specified in Section 9.5. Testing shall
for ed on all DRBG functions implemented.    
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rmative) Application-Specific Constants 

EC_DRBG 

od p) 

otation: 

p - Order of the field Fp , given in decimal 

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for  
consistency with FIPS 186-3 but is referred to as n in the description of the 
Dual_EC_DRBG (...) 

a – (-3) in the above equation 

b - coefficient above 

The x and y coordinates of the base point, ie generator G, are the same as for the point P. 
A.1.1  Curve P-256 

p = 11579208921035624876269744694940757353008614\ 
3415290314195533631308867097853951 

r = 11579208921035624876269744694940757352999695\ 
5224135760342422259061068512044369 

b =   5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 
27d2604b 

Px = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 
f4a13945 d898c296 

Py = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece 
cbb64068 37bf51f5 

Qx = c97445f4 5cdef9f0 d3e05e1e 585fc297 235b82b5 be8ff3ef 
ca67c598 52018192 

Qy = b28ef557 ba31dfcb dd21ac46 e2a91e3c 304f44cb 87058ada 
2cb81515 1e610046 

 

Appendix A: (No

A.1 Constants for the Dual_

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the 
elliptic curve. One of the following NIST approved curves and points shall be used in 
applications requiring certification under FIPS 140-2. More details about these curves may 
be found in FIPS PUB 186-3, the Digital Signature Standard. 

Each of following curves is given by the equation: 

y2 = x3- 3x + b (m

N
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A.1.2  Curve P-384   

p = 3

 181d9c6e fe814112 0314088f 
5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef 

7ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 
741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7 

Py = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c 

Qx = 
d1e89769 124179d0 b6951064 28815065 

Qy = 023b1660 dd701d08 39fd45ee c36f9ee7 b32e13b3 15dc0261 
f67 1f790f84 c5e09b05 674dbb7e 45c803dd 

p = 68647976601306097149819007990813932172694353\ 

98799971\ 

r = 68647976601306097149819007990813932172694353\ 

9753296399637136332111386476861244\ 

b8b48 
3d2c3 

4f1ef451 fd46b503 f00 

Py = 11839296 a789a3bc 0045c8a5 fb42c7d1 bd998f54 449579b4 
46817afb d17273e6 62c97ee7 2995ef42 640c550b 9013fad0 

9402006196394479212279040100143613805079739\ 

27046544666794829340424572177149687032904726\ 

6088258938001861606973112319 

r = 39402006196394479212279040100143613805079739\ 
27046544666794690527962765939911326356939895\ 

6308152294913554433653942643 

b = b3312fa7 e23ee7e4 988e056b e3f82d19

Px = aa8
59f

e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f 

8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750 
2ceede31 c47816ed 

0aa1b636 e346d

A.1.3  Curve P-521 

00143305409394463459185543183397656052122559\ 

640661454554977296311391480858037121

6643812574028291115057151 

00143305409394463459185543183397655394245057\ 

7463332171

0380340372808892707005449 

b = 051953eb 9618e1c9 a1f929a2 1a0b6854 0eea2da7 25b99b31 5f3
9918ef10 9e156193 951ec7e9 37b1652c 0bd3bb1b f073573d f88

Px = c6858e06 b70404e9 cd9e3ecb 662395b4 429c6481 39053fb5 
21f828af 606b4d3d baa14b5e 77efe759 28fe1dc1 27a2ffa8 
de3348b3 c1856a42 9bf97e7e 31c2e5bd 66 
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To insure that the point Q has been generated appropriately, an additional self

 

86a272c 24088be9 4769fd16 650 

2276171 
7f722943 

Qy = f9430ef 8442c501 8976ff34 
d327c0e7 

A.2  

irs of points, provided 
 in 

Appen entation 
hard-

wi ng_state 
ts shall 
ndix 

A.2.2.  

endation, and shall be appropriate for the desired security_strength, as 

Th  for the selected 
curve st one point each 
time.)

The p rocedure specified in ANS X9.62. The 

A ED, and hash 
fu  of this 
R  to Section 10.3.1, 
T  length of SEED may be larger than m. The hash 

If t  
be 

A.2.2  

-test 

761353c7 0

Qx = 1b9fa3e5 18d683c6 b6576369 4ac8efba ec6fab44 f
a4272650 7dd08add 4c3b3f4c 1ebc5b12 22ddba07 
b24c3edf a0f85fe2 4d0c8c01 591f0be6 f63 

 1f3bdba5 85295d9a 1110d1df 1
37ef91b8 1dc0b813 2c8d5c39 c32d0e00 4a3092b7 
a4d26d2c 7b69b58f 90666529 11e45777 9de 

Using Alternative Points in the Dual_EC_DRBG() 

The security of Dual_EC_DRBG( ) requires that the points P and Q be properly 
generated.  To avoid using potentially weak points, the points specified in Appendix A.1 

uld be used. However, an implementation may use different pasho
that they are verifiably random, as evidenced by the use of the procedure specified

dix A.2.1 below, and the self-test procedure in Appendix A.2.2. An implem
that uses alternative points generated by this Approved method shall have them “

red” into its source code, or hardware, as appropriate, and loaded into the worki
at instantiation. To conform to this Recommendation, alternatively generated poin
use the procedure given in Appendix A.2.1, and verify their generation using Appe

A.2.1 Generating Alternative P,Q  

The curve shall be one of the NIST curves from
A.1 of this Recomm

 FIPS 186-3 that is specified in Appendix 

specified in Table 4, Section 10.3.1.   

e point P shall remain the generator point G given in Appendix A.1
. (This minor restriction simplifies the test procedure to verify ju
 

oint Q shall be generated using the p
following input is required: 

n elliptic curve E = (Fq, a, b), cofactor h, prime n, a bit string SE
nction Hash(). The curve parameters are given in Appendix A.1
ecommendation. The minimum length m of SEED shall conform
able 4, under “Seed length”.  The bit

function shall be SHA-512 in all cases.  

he output from the ANS X9.62 generation procedure is “failure”, a different SEED must
used. 

Otherwise, the output point shall be used as the point Q.  
Additional Self-testing Required for Alternative P,Q 
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pro ction is invoked. Section 
d prior 
n of the 

gen to 
n e of 

n).  If 
the halt with 
an 

cedure shall be performed whenever the instantiate fun
9.5.1 specifies that known-answer tests on the instantiate function be performe
to creating an operational instantiation. As part of those tests, an implementatio

eration procedure in ANS X9.62 shall be called with the SEED value used 
erate the alternate Q. The point returned shall be compared with the sge tored valu

Q used in place of the default value (see Appendix A.1 of this Recommendatio
 generated value does not match the stored value, the implementation shall 
error condition.
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B.1

 The bitstring to be converted. 

Output:  
1. x The requested integer representation of the bitstring. 

Process: 
1. Let (b1, b2,…, bn) be the bits of b from leftmost to rightmost. 

2.  

3. Return x. 

In this Recommendation, the binary length of an integer x is defined as the smallest integer 
n satisfying x < 2n.  
B.2 Integer to a Bitstring 

Input:  
1. x The non-negative integer to be converted. 

Output:  
1. b1, b2, ..., bn The bitstring representation of the integer x. 

Process: 

1. Let (b1, b2, ..., bn) represent the bitstring, where b1 = 0 or 1, and b1 is the most 
significant bit, while bn is the least significant bit. 

2. For any integer n that satisfies x < 2n, the bits bi shall satisfy: 

 

3. Return b1, b2, ..., bn. 

In this Recommendation, the binary length of the integer x is defined as the smallest 
integer n that satisfies x < 2n. 
B.3 Integer to an Octet String 

Input:  

 

Appendix B : (Normative) Conversion and Auxilliary Routines 

 Bitstring to an Integer 

Input:  
1. b1, b2,…, bn

( )∑
=

−=
n

i
i

in bx
1

2 .

( )∑
=

−=
n

i
i

in bx
1

2 .
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1. A non-negative integer x, and the intended length n of the octet string satisfying 

 

Output:  

 length n octets. 

 

ost to rightmost. 

e octets of O shall satisfy: 

x = Σ 2
 i = 1 to n. 

B.4 Octet String to an Integer 

Input:   
 of length n octets. 

teger x. 

Process:  
O1, O2, …, O  be the octets of O from leftmost to rightmost. 

ined as f

 x = Σ 28(n-i)O

. 
B.5 C

The ran of two types: 
either a random bitstring of a specified length, or a random integer in a specified interval. 
In some cases, a DRBG may return a random number in a specified interval that needs to 
be converted into random bits; in other cases, a DRBG returns a random bitstring that 
needs t m number in a specific range. 

tions sequences of random numbers are required (a0, a1, 

 integer ai satisfies 0 ≤ ai ≤ r-1, for some positive integer r (the range of the 

   28n > x. 

1. An octet string O of

Process:

1. Let O1, O2,…, On be the octets of O from leftm

2. Th
8(n-i)Oi

for

3. Return O. 

1. An octet string O

Output:    
1. A non-negative in

1. Let n

2. x is def ollows: 

i

for i = 1 to n. 

3. Return x
onverting Random Numbers from/to Random Bits 

dom values required for cryptographic applications are generally 

o be converted to a rando
B.5.1 Converting Random Bits into a Random Number 

In some cryptographic applica
a2,…) where: 

i) Each
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probability almost exactly 1/r, for any i ≥ 0 and for 
0 ≤ s ≤ r-1); 

iii)  of any set of values aj (j ≠ i). 

Fou es are specified for generating sequences of random numbers from sequences 
of random

If the ra ai ≤ b rather than 0 ≤ ai ≤ r-1, then a random 
number ed by computing ai + a, where ai is a random 
number in the rang (that is, when r = b-a+1). 
B.5.1.1 The Simple Discard Method 

Let m b f bits needed to represent the value (r–1).  The following method 
m number a: 

e random bit generator to generate a sequence of m random bits, (b0, b1, …, 
 

ii) The equation ai = s holds, with 
any s (

Each value ai is statistically independent

r techniqu
 bits. 

nge of the number required is a ≤ 
 in the desired range can be obtain

e 0 ≤ ai ≤ b-a 

e the number o
may be used to generate the rando

1. Use th
bm-1).

2. Let ∑
−

=0

2 i
i b . 

3. If card c and go to Step 1. 

Thi roduces a random number a with no skew (no bias).  A possible 
disadva ch a random 
a is not i se of the conditional loop. 

The ratio r/2m  the efficiency of the technique, and this ratio will always 
satisfy 0.5 < r/2 r/2 ethod is simple and efficient.  
However, i o 0.5, then the simple discard method is less efficient, and the 
more co  below is recommended. 

, 

2. Let 

1m

=
i

c

c < r then put a = c, else dis

s method p
ntage of this method, in general, is that the time needed to generate su
 a f xed length of time becau

is a measure of
m ≤ 1.  If m is close to 1, then the above m

f r/2m is close t
mplex method

B.5.1.2 The Complex Discard Method 

Choose a small positive integer t (the number of same-size random number outputs 
desired), and then let m be the number of bits in (rt –1).  This method may be used to 
generate a sequence of t random numbers (a0, a1, … , at-1): 

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …
bm-1). 

∑=
−

=

2 bc . 

t , then 

1m
i

0i
i

3. If c < r

let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ≤ ai ≤ r -1 such 
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−

=

 to Step 1. 

Thi ible 

gth of time because of the conditional loop.  The complex discard method 

, and this ratio will always 
, it is recommended to choose t so that t is the 

(as 
sim
B.5.1.3 The d 

Let  number of bits needed to represent the value (r–1), and let s be a security 
parameter. The following method may be used to generate one random number a: 

 m+s random bits, (b0, b1, 

=
1t

i arc
0i

i

else discard c and go

 

s method produces random numbers (a0, a1, … , at-1) with no skew.  A poss
disadvantage of this method, in general, is that the time needed to generate these numbers 
is not a fixed len
is guaranteed to produce a sequence of random outputs for each iteration and, therefore, 
may have better overall performance than the simple discard method if many random 
numbers are needed.   

t m ciency of the techniqueThe ratio r /2  is a measure of the effi
satisfy 0.5 < rt/2m ≤ 1.  Hence, given r
smallest value such that rt/2m is close to 1.  For example, if r = 3, then choosing t = 3 
means that m = 5 (as rt is 27) and rt/m = 27/32 ≈ 0.84, and choosing t = 5 means that m = 8 

t tr  is 243) and r /m = 243/256 ≈ 0.95.  The complex discard method coincides with the 
ple discard method when t = 1. 

Simple Modular Metho

m be the

1. Use the random bit generator to generate a sequence of
…, bm+s-1). 

2. Let ∑
−+

=

 
 probability that ai=w for any particular 

 /r. However, for a large enough value of s, the 

Cho
desired  security parameter s; let m be the number of bits in (r  –1). The following 
method may be used to generate a sequence of t random numbers (a0, a1, …, at-1): 

it generator to generate a sequence of m+s random bits, (b0, b1, 
…, b ). 

=
1

2
sm

i
i bc . 

0i

3. Let a=c mod r. 

The simple modular method can be coded to take constant time.  This method produces a
random value with a negligible skew, that is, the
value of w (0 ≤ w ≤ r-1) is not exactly 1
difference between the probability that ai=w for any particular value of w and 1/r is 
negligible.  The value of s shall be greater than or equal to 64.  
B.5.1.4 The Complex Modular Method 

ose a small positive integer t (the number of same-size random number outputs 
) and a t

1. Use the random b
m+s-1

86
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2. Let
1

0
2

sm

i
i

i b  mod rt. 

3. e sequence of values satisfying 0 ≤ ai ≤ r-1 such 

∑
−+

=

 =c

Let (a0, a1, …, at-1) be the uniqu

that ∑
−

=

ar 
ith 

 is, the probability that a =w for any particular value of w (0 ≤ w ≤ r-

 s 
 

h Extraction) Method 

and 

For
bits, from t, and to partition the possible values of r into disjoint sets based on 
the ize of rand  bits that might be extracted.  As a small example, if n = 11, then 
the binary representation of n is b’1011’, and the possible values of r (in binary) are as 
follows: 

it 

 extracted as unbiased 
s of [0000, 0001, 0010, 0011, 0100, 0101, 0110, 

10, 
d  

 and the 

4. it of n is b‘0’, the 3rd bit of r is always b‛0’ in the class determined in 
step 3; therefore the 3rd bit of r is already known to be biased, so the analysis 
moves to the next bit (step 5). 

=
1

0

t

i
i

iarc . 

The complex modular method is guaranteed to produce a sequence of random outputs with 
each iteration and, therefore, may have better overall performance than the simple modul
method if many random numbers are needed.  This method produces a random value w
a negligible skew; that i
1) is not exactly 1/r. However, for a large enough value of s, the difference between the 
probability that ai=w for any particular value of w and 1/r is negligible.  The value of
shall be greater than or equal to 64.  The complex modular method coincides with the
simple modular method when t=1. 
B.5.2 Converting a Random Number into Random Bits 

B.5.2.1 The No Skew (Variable Lengt

This is a method of extracting random unbiased bits from a random number modulo a 
number n.  First, a toy example is provided in order to explain how the method works, 
then pseudocode is given. 

 the toy example, the insight is to look at the modulus n and the random number r as 
 left to righ

 largest s om

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010. 

Let the leftmost bit be considered as the bit 4, and the rightmost bit be considered as the b
1. 

1. As the 4th bit of n is b‛1’, look at the 4th bit of r.   

2. If the 4th bit of r is b‘0’, then the remaining 3 bits can be
random bits.  This forms a clas
0111] and maps each respective element into the 3-bit sequences [000, 001, 0
011, 100, 0101, 110, 111], each of which is unbiased, and the process is complete

3. If the 4th bit of r is b‛1’, then r falls into the remainder [1000, 1001, 1010],
process needs to continue with step 4 in order to extract unbiased bits. 

As the 3rd b
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5. n is b‘1’, so this forms a subclass [1000, 1001], from which one random 
 bit can be , namely the 1st bit.   

 

ran its can be tracted; 2/11 of the time, 1 unbiased bit can be extracted; and 
1/11, no unbiased bits can be extracted.  As can be seen, it is not known ahead of time 

Comment: if n(i) = b‘0’, or r(i) = b‘1’, then 
ew situation; the routine cannot 

extract i-1 unbiased bits, so the index is 
to check next bit 

ction takes a variable amount of time, but this varying amount of time does not 
leak an ethod. 

A p Extraction) Method of 
Ap d to extract a variable number of 
random ng 
method his 
method

1. 

This m hen the high order bits of the modulus are all set to 

The 2nd bit of 
unbiased  extracted

The remaining value of 1010 cannot be used to extract random bits. However, 
obtaining this value is not usual.  For this tiny example: 8/11 of the time, 3 unbiased 

dom b  ex

how many unbiased bits will be able to be extracted, although the average will be 
known. 

Let both the modulus n and the random r values have m bits. This means that n(m) = b‘1’, 
although r(m) may be either b‘1’ or b‘0’. 

1. outlen = 0. 

2. Do i = m to 1 by –1 

this is a sk

shifted right 

2.1 If ((n(i) = b‘0’) or (r(i) = b‘1’)), then go to step 2.5. 

2.2 outlen = i-1.  

2.3 output = r(outlen,1).  

2.4 i = 1   Comment: all unbiased bits possible 
have been extracted, so exit . 

2.5 Continue 

The extra
y information to a potential adversary that can be used to attack the m

B.5.2.2 The Negligible Skew (Fixed Length Extraction) Method 

ossible disadvantage of the No Skew (Variable Length 
pen ix B.5.2.1 is that it takes a variable amount of time 

 bits.  To address this concern and to simplify the extraction method, the followi
 is specified that extracts a fixed length of random bits with a negligible skew.  T
 exploits the fact that the modulus n is known before the extraction occurs.   

Examine the modulus considered as a binary number from left to right, and 
determine the index bit such that there are at least 16 b‘1’ bits to the left. Call this 
bit i.   

2. Extract random bits from the random number r by truncating on the left up to bit i. 
This is the output = r(i,1).   

ethod is especially appropriate w
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Thi the following analysis.  When 
con hat less 
tha  
ran n 
of t
onl
num  occurs about once every 2  times.  As the modulus is at least 160 bits, this 

ost bit or bits tending to a binary zero bit or bits.  
Thi  as little as one bit.  However, an adversary will not know exactly 
where this skewed substring occurs.  The 9,437,184 total output bits will still be 
overwhelm in the statistical variation of
the statistical variation almost certainly will 

 

 

b‘1’ for efficiency reasons, as is the case with the NIST elliptic curves over prime fields. 

s method is acceptable for elliptic curves, based on 
sidering the no skew method, once the random bits are extracted, it is obvious t
n the full number of random bits can be extracted, and the extraction result will still be
dom.  The truncation of more bits than necessary is acceptable.  What about truncatio
oo few bits?  For a random number, the no skew extraction process would continue 
y if the 16 bits of r corresponding to the b‘1’ bits in n are all zero.  For a random 
ber, this 16

means that 144 bits with a skew are extracted in this case.  On average, once every 
9,437,184 output bits (or more), there will be a 144-bit substring somewhere in that total 
that has a skew, which will have the leftm

s skew could be

ingly likely to be with  a random bitstring; that is, 
be much greater than this negligible skew.  
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’t 

ict or 
d 

w 

ependent on the probabilities associated with the possible results for a given “event” (e.g., 
 a coin).  

In this Recommendation, entropy is relative to an adversary and his ability to observe or 
predict a value. If the adversary has no uncertainty about the value, then the entropy is zero 
(and so is the security of the consuming application that relies on the DRBG). Any 
assessment of the entropy of a particular value is actually an assessment of how much of 
the value is unknown to the adversary.  
C.2 Entropy Source 

Entropy is obtained from an entropy source. The entropy input required to seed or reseed a 
DRBG shall be obtained either directly or indirectly from an entropy source (see Appendix 
D for information on RBG construction). The entropy source is the critical component of 
an RBG that provides un-guessable values for the deterministic algorithm to use as entropy 
input for the random bit generation process. 

Every entropy source must include some process that is unpredictable. An intuitive 
(although usually impractical) example is tossing a coin and recording the sequence of 
heads and tails. More likely, the entropy source will be an electronic process, such as a 
noisy diode, which receives a constant input voltage level and outputs a continuous, 
normally distributed analog voltage level.  Other possibilities include thermal noise or 
radioactive decay that are measured by appropriate instruments. The unpredictability could 
involve human interaction with an otherwise deterministic system, such as the sampling of 
a high-speed counter whenever a human operator presses a key on a keyboard. In any case, 
there shall be something happening that is unpredictable to an adversary, either 
fundamentally unpredictable (e.g., when the next particle is detected by a Geiger counter), 
or unpredictable from a practical point of view (e.g., the adversary won’t know the exact 
value of a high-speed counter if he isn’t close enough to the human pressing a key). 

An examination of the DRBG algorithms in this Recommendation reveals a common 
feature: each of them takes entropy input, produces a seed and applies an algorithm to 
produce a potentially large number of pseudo-random bits. The most important feature of 
the interaction between the entropy input and the algorithm is that if an adversary doesn
know the entropy input, then he can’t tell the difference between the pseudo-random bits 
and a stream of truly random bits, let alone predict any of the pseudorandom bits. On the 
other hand, if he knows (or can guess) the entropy input, then he will be able to pred
reproduce the pseudorandom bits. Thus, the security of the DRBG output is directly relate
to the adversary’s inability to guess the entropy input.  
C.1 What is Entropy ? 

The word “entropy” is used to describe a measure of randomness, i.e., a description of ho
hard a value is to guess. Entropy is a measure of uncertainty or unpredictability and is 
d
a throw of a die or flip of
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Figure C-1 p  a noisy 
diode or a co gitized). 

its, 
re 

 it may be 
 the 

 and use of entropy sources is currently under development and 
is expected to be provided as a NIST Recommendation in the future.  

ned from an entropy source shall be assessed 
ote 

al 

py.  

 
ore 

rovides a generic model for an entropy source. A noise source (e.g.,
in flip) provides the entropy, which is then converted to bits (i.e., di

Some entropy sources will perform further processing (conditioning) on the resulting b
guaranteeing unbiased output. An entropy source may process the bits to the point whe
the output bitstring will have full entropy; i.e. the entropy of the bitstring will be (nearly) 
the same as its length. In this case, the entropy source will usually include a conditioning 
routine, and the entropy source is often 
called a conditioned entropy source. 

An assessment is made of the amount of 
entropy that has been obtained. Typically, 
this assessment is performed directly on 

ENTROPY
SOURCENoise

Source

the digitized data, although
perfomed on the data resulting from

Digitalization

(Optional)
Conditioning

Assessment
Health
Testingconditioning process (see Appendix C.3). 

Health tests are performed to determine 
that the entropy source is performing 
correctly. 

Before an entropy source is selected for 
providing entropy input to a DRBG, a 
thorough evaluation of the amount of 
entropy it is capable of providing shall be 
performed.  

OUTPUT

Figure C-1: Entropy Source Model 

Guidance on the selection

C.3 Entropy Assessment 

A DRBG requires a predetermined amount of entropy in the entropy input that is used to 
seed or reseed an instantiation in order to provide the requested DRBG security strength. 
Therefore, the amount of actual entropy obtai
before providing it as entropy input. A means of measuring the entropy is required. N
that the actual entropy provided in a given string of entropy input bits is less than or equ
to the length of that bitstring; i.e., each bit of the entropy input has (at most) one bit of 
entropy; multiple bits of the entropy input may be required to provide one bit of entro

There are many entropy measures defined in information theory; this Recommendation 
uses a very conservative measure that is known as min-entropy (Hmin). Suppose that the 
digitized Noise Source produces one of n possible outputs at each sampling, with the ith 
possible outcome having a probability of pi. The min-entropy of the outputs is: 

Hmin = −lg2( pmax ) 

where pmax is the maximum probability of the pi .  Hmin is expressed in bits. Another, more
commonly used measure of entropy is Shannon entropy. However, min-entropy is a m
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s 
 indicated in column 2. The probability of each 

iode and is provided in column 3. Note that other 

requires obtaining numerous samples, where 
e of event. Once sufficient samples have been 
rted to bits (e.g. an analog voltage will be 

s could be mapped to ones and zeros). 

igitaization Ranges and Probabilities 

Sampled Voltage Digitized Output Probability (pi) 

conservative estimate of entropy than Shannon entropy, since min-entropy is always less 
than Shannon entropy. Therefore, the more conservative estimate is used in this 
Recommendation 

For example, suppose that a noisy diode is used as a source of entropy, and that the diode 
has possible voltages divided into 16 intervals (column 1), with each interval assigned a 4-
bit string value from 0000 to 1111 (column 2). Whenever the diode is sampled, the result i
digitized and converted to the 4-bit value
interval has been determined for this d
diodes may behave differently. 

Collecting entropy from an entropy source 
each sample is the result from a given typ
gathered, they generally need to be conve
mapped to some digital value, or coin tosse

 
Table C-1 : Voltages D

5.2<<∞− Z  0000 0.000233 

35.2 <≤ Z  0001 0.001117 

5.33 <≤ Z  0010 0.004860 

45.3 <≤ Z  0011 0.016540 

5.44 <≤ Z  0100 0.044057 

55.4 <≤ Z  0101 0.091848 

5.55 <≤ Z  0110 0.149882 

65.5 <≤ Z  0111 0.191462 

5.66 <≤ Z  1000 0.191462 

75.6 <≤ Z  1001 0.149882 
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Sampled Voltage Digitized Output Probability (pi) 

7 5.7<≤ Z  1010 0.091848 

85.7 <≤ Z  1011 0.044057 

5.88 <≤ Z  1100 0.016540 

95.8 <≤ Z  1101 0.004860 

5.99 <≤ Z  1110 0.001117 

∞<≤ Z5.9  1111 0.000233 

 

For this diode, iti 1 a h a probability 
of 0.191462. Therefore, pmax = 0.191462. Using the min-entropy formula above: 

Hmin = − 2( pmax ) = 0.19462) = 2

This means that for each 4-bit sample from
expected.  

One useful fact about min-entropy is that if two samples are independent (e.g., samplings 
of the same noisy diode), then the entropy r concatenati m of their 
entropy. This makes sense; if the samples are independent, then guessing one sample 
provides no information for guessing another one. If various events are concatenated, then 
the min-entropy for each event is added to find the min-entropy of the concatenated events.  
In the noisy diode example, if a sample ha  2.38487 bits, then ten 
samples taken together have a min-entropy ples have 
a min-entropy of 238.487 bits.  

These entropy measures relate directly to the security strengths of the Approved DRBG 
algorithms.  When the entropy source is used to provide entrop
sample will provide a bitstring, along with sessed amoun y in that bitstring. 
If a single sample does not provide sufficient entropy for the DRBG, a sequence of 
bitstrings are obtained and concatenated w h other until  the entropy 
assessments for the samples is equal to or greater than the entropy required by the DRBG. 
For example, to provide entro y input that ropriate to in DRBG with a 
security strength of 128 bits, at least 54 sam
53.67 ≈ 54) and would result in a bitstring of 216 bits to provide at least 128 bits of 
entropy.  

 the most likely dig zed outputs are 011 nd 1000, each wit

lg  −lg2( .38487. 

 this diode, an entropy of 2.38487 bits is 

  of thei on is the su

s a min-entropy of
of 23.8487 bits, and one hundred sam

y input for a DRBG, each 
t of entrop the as

ith eac the sum of

p  is app
plings of the diode ar

stantiate a 
e required (128/2.38487 = 

93
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C.4 Coin Flipping Entropy Source Example 

Coin flipping (sometimes called coin tossi erhaps the m tforward example 
of an entropy source, although it may be im ical to actuall ny cases.  
However, for the occasional seeding of a DRBG when other entropy sources are not 
available, coin flipping may b  appropriat  Recommend s the generation 
of random bits as the entropy input for a DRBG using this coin-flipping process when 
strict procedures are used to e force accur  of the proce ct the secrecy of 
the results.   

The coin flipping procedure d scribed her be used as an urce because of 
the indepence of the coin flips. The procedure is as follows: 

1. Select a single coin to be used for the procedure. 

2. Determine the entropy requirement (x) for the DRBG to be instantiated. 

3.  Flip the coin until at least x heads a ils have appeared, recording each coin flip 
result in order. Note that there will be at least 256 coin flips, and possibly several 

lue. 

5. The entire string  input. 

ng) is p
pract

ost straigh
y use in ma

e e. This ation allow

n ate use ss and prote

e e may  entropy so

nd x ta

more. 

4. Convert each head to either a zero or a one; convert each tail to the other va

 of zeroes and ones shall be used as the entropy
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Random Bit Generator (RBG) from 

ng 

 

t may be 1) an Approved 
No n Approved DRBG (or chain of 
Ap ts may be 
hel

 source output in order to produce an output 

Recommendation. To form a chain of DRBGs (see the 
chain of two DRBGs in Figure D-2), the entropy input 
for the instantiation of the first DRBG (the highest 
DRBG in the chain) shall be obtained from a “true” 
source of entropy (i.e., an Approved NRBG or an 
Approved entropy source). Each subordinate DRBG is 
instantiated with entropy input acquired from an 
entropy request to a higher DRBG in the chain; the 
entropy input shall contain sufficient entropy to 
support the requested security strength for the 
subordinate DRBG. The security strength provided by 
the higher level DRBG shall be equal to or greater 
than the security strength of any subordinate DRBG. 

c. An entropy source provides entropy source output (see 
Appendix C.1). This entropy source output may be used as th
DRBG; i.e., the entropy input source may be the output of an
DRBG A and the entropy input from the entropy source in Fi
Approved entropy source by itself (i.e., not part of an NRBG
provide full entropy. However, the entropy resource will prov
the amount of entropy available in the output.  

Appendix D: (Normative) Constructing a 
Entropy Sources and DRBG Mechanisms 

This Recommendation is primarily concerned with the DRBG algorithms for generati
pseudorandom outputs and how they are to be implemented.  Some discussion of entropy 
sources that may be used to provide entropy input are provided in Appendix C. This 
appendix briefly describes how to combine the entropy source with a DRBG mechanism to
create an Approved RBG. 
D.1 Entropy Input for a DRBG 

Section 8.6.5 states that the source of a DRBG’s entropy inpu
n-deterministic Random Bit Generator (NRBG), 2) a
proved DRBGs) or 3) an Approved entropy source. A clarification of concep
pful at this point.  

a. An NRBG contains an entropy source (see Appendix 
C.1) and performs algorithmic processing on the 
entropy

ENTROPY SOURCE
(See Figure C-1)

with full entropy (see Figure D-1).  

ALGORITHMIC
PROCESS-

ING

FULL ENTROPY
OUTPUT

G 

b. A DRBG is defined in the body of this 

 

Figure D-1: NRB
e entropy input for a 
 entropy source (see 
gure D-2). An 
) may or may not 
ide an assessment of 
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A
a
When designing such

ormation from 
 provides 

ay not be readily 
ava
persiste
D.2 A

D

The ic “features” that an RBG 
can off rediction resistance is 
practic e entropy input source must 
provide ended for the DRBG. The 
entropy er requested (i.e., entropy is 
readily put source may provide 
entropy ay, in 
practic ). In any event, the entropy 
input m re (i.e., private and authentic) 
channe
D.2.1 

The ide e entropy input source that 
provides entropy input (immediat
bits

When t
instanti
honore
outputs

Upon e quest is returned to the calling 
function (i.e., the instantiate or reseed function). A failure of the entropy input source has 
the following consequences: 

 (complete) RBG that incorporates a DRBG 
lso includes the source of entropy input. 

 an RBG, there are a 

DRBG B
(see Figure 1)

DRBG B
(see Figure 1)

DRBG A
(see Figure 1)

DRBG A
(see Figure 1)

ENTROPY
SOURCE

(see Figure C-1)

ENTROPY
SOURCE

(see Figure C-1)

NRBG
(see Figure D-1)

NRBG
(see Figure D-1)

number of concerns to be addressed in 
addition to the DRBG to be selected, 
including the entropy input source to be used, 
how readily the entropy input to the DRBG 
can be provided, and how the DRBG 
maintains its internal state inf

OR

Entropy Input

one request to the next. Appendix G
a discussion on DRBG selection, and 
Appendix C provides some basic discussion 
on entropy sources.  This appendix includes 
discussions about using entropy input sources 
whose output may or m

Entropy Input

Pseudorandom
Output

ilable and discusses internal state 
nce. 
vailability of Entropy Input for a 
RBG Figure D-2: Chain of DRBGs 

 choice of an entropy input source will determine the specif
er a consuming application (e.g., whether reseeding or p
al). Whenever entropy input is requested by a DRBG, th
 sufficient entropy to support the security strength int
 input source may be able to provide entropy whenev

 available on demand). On the other hand, the entropy in
 too slowly to honor “frequent” requests  (e.g., the entopy input source m

e, be able to provide entropy only during instantiation
ust be provided to the DRBG mechanism via a secu
l. 
Using a Readily Available Entropy Input Source 

al situation for a DRBG is to have ready access to som
ely) upon request.  The entropy input source provides 

trings, along with a promise about how much entropy is available.  

he DRBG has a readily available source of entropy input, reseeding and 
ation can be performed on demand, requests for prediction resistance can be 
d, and a DRBG can be reseeded when it has produced the maximum number of 
 (i.e., the reseed_interval is reached).  

ach request for entropy input, the status of the re
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tected, the DRBG functions are designed to 
error state (see Section 9.6). No further output is 

d. 

detected, the DRBG will continue to provide 
vailable in the internal state.  

g instantiation, an undetected failure would be 
ld totally fail to provide the promised security 

be taken to ensure that a DRBG is 

stantiation, a request for prediction 
on resistance being provided; however, the 

 based on whatever entropy had previously 

r during a normal reseed (at the end of the 
d_interval), the security strength of the output would be based on whatever 

ed. If the implemented reseed_interval is the 
 the DRBG ( then 

urity provided by the DRBG algorithm is no longer assured. Therefore, the 

 

; 

(e.g., when a user is moving the mouse around on a laptop).   

nal entropy from inputs provided by 
the user or consuming application as additional_input.  For this reason, the DRBG 

ns, 

s 
n many environments, the internal state can 

me, 

• If the failure of the entropy source is de
return an error status and enter the 
produced until the failure is correcte

• If the failure is not immediately 
output, based on the entropy currently a

If the failure occured prior to or durin
catastrophic, as the DRBG wou
strength. Therefore, extreme care must 
instantiated with sufficient entropy. 

If the failure occurred subsequent to in
resistance would not result in predicti
security strength of the output would be
been obtained.  

If the failure occured prior to o
resee
entropy had previously been obtain
maximum that can be supported by
the sec

see the tables in Section 10), 

use of a reseed_interval that is significantly less than the maximum interval is 
recommended. This would provide additional time for the entropy source failure to
be detected.  

D.2.2 No Readily Available Entropy Input Source 

Many implementations of DRBGs will not have ready access to an entropy input source
however, a DRBG must be instantiated at a time when the DRBG actually does have 
access to some reliable entropy input source.  In some applications, the entropy input 
source is only available during manufacture or device setup; in others, it is occasionally 
available 

Over time, a DRBG may be able to accumulate additio

implementation should accept additional input whenever possible.  Implementations that 
have values that may have some entropy, such as timestamps or nonces from protocol ru
should provide these values to the DRBG as additional inputs. 
D.3 Persistence Considerations  

A DRBG is provided with entropy input during instantiation, and the instantiation exist
for as long as the internal state is maintained. I
be maintained for a very long time because power is continually available during that ti
or the internal state is stored in persistent memory that is not affected by power 
fluctuations.  
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Ho v
the per
withou ore the internal state); any DRBG whose 
inte ., to 
pro e
random n may be to 
instanti
interna    Let 
the DR BGsource; 
let the ed. 

DRBG ilable, 
and the
availab
provide , which must have been instantiated when sufficient entropy was 
availab  card 
whose 
receive
Figure 

The fol
is an ad

1. 
requested output and provides it to DRBGshort-lived as entropy input for 

sing DRBGshort-lived may provide 

g 
 

 

 

source
ted at least once before the 

we er, there are environments in which a DRBG does not have continual power, and 
sistent memory may have limitations on the number of times that it can be changed 
t failing (e.g., flash memory is used to st

rnal state is saved in this limited access memory should be used conservatively, i.e
vid  outputs and changes to the internal state as infrequently as possible. If several 

 values are required whenever power is available, then a prudent desig
ate a second DRBG from the DRBG using the limited access memory to store its 
l state. The second DRBG’s internal state may not reside in persistent memory.
BG using the limited access memory to store the internal state be called DR
second DRBG be called DRBGshort-liv

source can be used to instantiate DRBGshort-lived whenever power becomes ava
 DRBGshort-lived instantiation only exists for as long as the power continues to be 
le. The security strength of DRBGshort-lived is dependent on the security strength 
d by DRBGsource
le as specified in Appendix D.1. An example of this case might be a smart
DRBGsource is instantiated by the manufacturer or issuer, and the smart card only 
s power thereafter when inserted into a smart card reader. This case is depicted in 
D-2 by considering DRBG B to be DRBGshort-lived. 

lowing is a common method for interacting between the two DRBGs. The method 
aptation of a concept that uses seed files in currently implemented RBGs.

Whenever power is available, a generate request is sent to DRBGsource. DRBGsource 
generates the 
instantiation. The consuming application u
additional input to DRBGshort-lived as a personalization_string during the 
instantiation process. 

2. After DRBGshort-lived provides one or more outputs as requested by its consumin
application, k-bits of additional output are generated by DRBGshort-lived , where k  ≥
3/2 security_strength. The k-bit output, along with any other application data that
might contain entropy, is provided as additional_input to DRBGsource in a generate 
request at some time before the power is removed. This will result in an update of 
the internal state of DRBGsource. Any resulting output from this request is ignored. 

If DRBGshort-lived generates a large number of outputs or persists for a long period of 
time, and it is unknown how long the power will be available, DRBG  should 
periodically perform this process to ensure that it is upda
power is removed.  
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r 

Appendix E: (Informative) Security Considerations when Extracting Bits in 
the Dual_EC_DRBG (...) 

E.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp

Given an integer x in the range 0 to 2N-1, the rth bit of x depends solely upon whethe

⎥⎦
⎥

⎢⎣
⎢

r

x
2

is odd or even. If all of the values in this range are sampled uniformly, the rth bit will 

be 0 exactly ½ of the time. But if x is restricted to F , i.e., to the range 0 to p-1, this 
statement is no longer true. 

P

 no 

.  

e 

ow in Appendix E.2. 

In a tru
observe d by 
the alg  bits, 
those b ade to have nearly “full strength”, in the sense that the 
entropy that they are missin

To illus
that all e 
also tha
time, th
254 of 
This is a simple consequence of the fact that only about 1/2 of
occur i

The "ab
differen , and the actual number of points on the curve (which is 
always within 2 * p  of p). For the NIST curves, these differences won't matter at the scale 
of the results, so they will be ignored. This allows the heuristics given here to work for any 
curve with "about" (2m)/f points, where f = 1 is the curve's cofactor. 

The basic assumption needed is that the approximately (2m)/(2f) x coordinates that do occur 
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of 
being an x coordinate. The assumption allows a straightforward calculation,--albeit 

By excluding the k = 2N – p values p, p+1, ..., 2N –1 from the set of all integers in ZN, the 
ratio of ones and zeroes in the rth bit is altered from  2N-1 / 2N-1  to a value that can be
smaller than (2N-1 – k)/ 2N-1.  For all the primes p used in this Recommendation, k/2N-1 is 
smaller than 2-31.  Thus, the ratio of ones and zeroes in any bit is within at least 2-31 of 1.0

To detect this small difference from random, a sample of 264 outputs is required before th
observed distribution of 1’s and 0’s is more than one standard deviation away from flat 
random. This effect is dominated by the bias addressed bel

 
E.2 Adjusting for the missing bit(s) of entropy in the x coordinates.  

ly random sequence, it should not be possible to predict any bits from previously 
d bits. With the Dual_EC_DRBG (...), the full output block of bits produce

orithm is “missing” some entropy.  Fortunately, by discarding some of the
its remaining can be m

g is negligibly small. 

trate what can happen, suppose that a mod p curve with m = 256 is selected, and 
 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppos
t 255 of these bits are published, and the 256-th bit is kept “secret”. About ½ the 
e unpublished bit could easily be determined from the other 255 bits. Similarly, if 
the bits are published, about ¼ of the time the other two bits could be predicted. 

m all 2  bitstrings of length m 
n the list of all x coordinates of curve points.  

outs" in the preceding example can be made more precise, taking into account the 
ce between 2m and p

½
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2

0=

E is the entropy. 

of 1+
(2f-1)/2 is the probability that any particular string occurs in an  coordinate; j = (j*2 )/2  

tropy (randomness). 

approximate--for the entropy in the rightmost (least significant) m-d bits of 
Dual_EC_DRBG output, with d << m. 

d

The formula is ( )[ ] jj
dddm ppjzbinomprobE 2log2,,22∑ − −−= , where 

j

The term in braces represents the approximate number of (m-d)-bitstrings that fall into one 
2d categories as determined by the number of times j it occurs in an x coordinate; z = 

f x p f m

is the probability that a member of the j-th category occurs. Note that the j=0 category 
contributes nothing to the en

The values of E for d up to 16 are:  

log2(f): 0  d:  0  entropy:    255.00000000  m-d: 256 

log2(f): 0  d:  1  entropy:    254.50000000  m-d: 255 

log2(f): 0  d:  2  entropy:    253.78063906  m-d: 254 

log2(f): 0  d:  3  entropy:    252.90244224  m-d: 253 

f): 0  d:  4  entropy:    251.95336161  m-d: 252 log2(

log2(f): 0  d:  5  entropy:    250.97708960  m-d: 251 

log2(f): 0  d:  6  entropy:    249.98863897  m-d: 250 

log2(f): 0  d:  7  entropy:    248.99434222  m-d: 249 

log2(f): 0  d:  8  entropy:    247.99717670  m-d: 248 

log2(f): 0  d:  9  entropy:    246.99858974  m-d: 247 

log2(f): 0  d: 10  entropy:    245.99929521  m-d: 246 

log2(f): 0  d: 11  entropy:    244.99964769  m-d: 245 

log2(f): 0  d: 12  entropy:    243.99982387  m-d: 244 

log2(f): 0  d: 13  entropy:    242.99991194  m-d: 243 

log2(f): 0  d: 14  entropy:    241.99995597  m-d: 242 

log2(f): 0  d: 15  entropy:    240.99997800  m-d: 241 

log2(f): 0  d: 16  entropy:    239.99998900  m-d: 240 

 

Observations: 

a) The table starts where it should, at 1 missing bit; 

b) The missing entropy rapidly decreases; 
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 in every 
ne bit of entropy is missing in a collection of 

10,000 outputs).  

alculations, for the mod p curves, it is recomm
implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit 

As 
 decide to truncate additional bits from 

 number retained is a multiple of 8. 

lid x-coordinates on an elliptic curve 
ld not be used as pseudorandom bits.  
rdinates by removing the high order 

truncation amounts has been 

 more than this amount.  The obvious 
runcation amount hinders the already 
al reason that argues against 
e low s bits of each x-coordinate are 

p), and letting N(I) denote the 
tribution of x-coordinates in [0, p) 

 estimates given in [Shparlinski].  

 For s < 2277, this inequality is weak 
se truncated x-coordinates are 
e value of s, the sharper this 

the associated truncated x-
eeping truncation to an acceptable 

uarantees can be made about the 
niform distribution of the resulting truncated quantities. 

c) For log2(f) = 0, i.e, the mod p curves, d=13 leaves 1 bit of information
10,000 (m-13)-bit outputs (i.e., o

Based on these c ended that an 

output.   

For ease of implementation, the value of d should be adjusted upward, if necessary, until 
the number of bits remaining , m-d= outlen,  is a multiple of 8. By this rule, the 
recommended number of bits discarded from each x-coordinate will be either 16 or 17. 
noted in Section 10.3.1.4, an implementation may
each x-coordinate, provided that the

Because only half of all values in [0, 1, ..., p-1] are va
defined over Fp, it is clear that full x-coordinates shou
The solution to this problem is to truncate these x-coo
16 or 17 bits.  The entropy loss associated with such 
demonstrated to be minimal (see the above chart). 

One might wonder if it would be desirable to truncate
drawback to such an approach is that increasing the t
sluggish performance.  However, there is an addition
increasing the truncation.  Consider the case where th

skept.  Given some subinterval I of length 2  contained in [0, 
number of x-coordinates in I, recent results on the dis
provide the following bound:  

| N(I) / (p/2) - 2s / p | < k * log2 p / sqrt p, 

where k is some constant derived from the asymptotic
For the case of P-521, this is roughly equivalent to: 

(s-1) 277| N(I)- 2  | < k *2 ,  

where the constant k is independent of the value of s. 
and provides very little support for the notion that the
uniformly distributed.  On the other hand, the larger th
inequality becomes, providing stronger evidence that 
coordinates are uniformly distributed.  Therefore, by k
minimum, the performance is increased, and certain g
u
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The int e examples are considered to be an array of states, identified by 
where the 

by an implementation. A particular element in the internal state is addressed by 

. 

ions (e.g., integer 

nused internal state. The function 

This exam
 A 

instantiation (instantiation_nonce); the 
nonce i BG is installed (e.g., by a call to the clock or by setting it 

 

The internal state contains values for V, C, reseed_counter, security_strength and 
prediction_resistance_flag, where V and C are bitstrings, and reseed_counter, 
security_strength and the prediction_resistance_flag are integers. A requested prediction 
resistance capability is indicated when prediction_resistance_flag = 1.  

In accordance with Table 2 in Section 10.1, the 112 and 128 bit security strengths may be 

Appendix F: (Informative) Example Pseudocode for Each DRBG 

ernal states in thes
state_handle. A particular state is addressed as internal_state (state_handle), 
value of  state_handle begins at 0 and ends at n-1, and n is the number of internal states 
provided 
internal_state (state_handle).element. In an empty internal state, all bitstrings are set to 
Null, and all integers are set to 0.  

For each example in this appendix, arbitary values have been selected that are consistent 
with the allowed values for each DRBG, as specified in the appropriate table in Section 10

The pseudocode in this appendix does not include the necessary convers
to bitstring) for an implementation. When conversions are required, they must be 
accomplished as specified in Appendix B. 

The following routine is defined for these pseudocode examples: 

Find_state_space (): A function that finds an u
returns a status (either “Success” or a message indicating that an unused internal state 
is not available) and, if status = “Success”, a state_handle that points to an available 
internal_state in the array of internal states. If status ≠ “Success”, an invalid 
state_handle is returned. 

When the uninstantantiate function is invoked in the following examples, the function 
specified in Section 9.4 is called. 
F.1 Hash_DRBG Example 

ple of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is 
supported in the example. Both a personalization string and additional input are allowed.
32-bit incrementing counter is used as the nonce for 

s initialized when the DR
to a fixed value) and is incremented for each instantiation. 

A total of 10 internal states are provided (i.e., 10 instantiations may be handled 
simultaneously).  

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are 
not called as separate routines from the function envelopes. Also, the Get_entropy_input
function uses only two input parameters, since the first two parameters (as specified in 
Section 9) have the same value. 
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support
generat

) 

ut_string_length) = 512 

F.1

Thi rn a text message and an invalid state handle (-1) when an 
 is 

s not check the prediction_resistance_flag, since the 
iction resistance. However, if a consuming application 

th, prediction_resistance_flag), 

 status, integer state_handle. 

ation_security_strength > 128), then Return (“Invalid 

ed. Using SHA-1, the following definitions are applicable for the instantiate, 
e and reseed functions and algorithms: 

1. highest_supported_security_strength = 128. 

2. Output block length (outlen) = 160 bits. 

3. Required minimum entropy for instantiation and reseed = security_strength. 

4. Seed length (seedlen) = 440 bits. 

5. Maximum number of bits per request (max_number_of_bits_per_request) = 5000 
bits. 

6. Reseed interval (reseed_interval) = 100,000 requests. 

7. Maximum length of the personalization string (max_personalization_string_length
= 512 bits. 

8. Maximum length of additional_input (max_additional_inp
bits. 

9. Maximum length of entropy input (max _length) = 1000 bits. 
.1 Instantiation of Hash_DRBG 

s implementation will retu
error is encountered. Note that the value of instantiation_nonce is an internal value that
always available to the instantiate function. 

Note that this implementation doe
implementation can handle pred
actually wants prediction resistance, the implementation expects that 
prediction_resistance_flag = 1 during instantiation; this will be used in the generate 
function in Appendix F.1.3. 

Instantiate_Hash_DRBG (...):  
Input: integer (requested_instantiation_security_streng

bitstring personalization_string. 

Output: string

Process: 
Comment: Check the input parameters. 

1. If (requested_instanti
requested_instantiation_security_strength”, -1). 

2. If (len (personalization_string) > 512), then Return (“Personalization_string 
too long”,  -1). 

Comment: Set the security_strength to one of 
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gth ≤ 112), then security_strength = 

Comment: Get the entropy_input. 

 (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_input 

must ensure that it wraps when it’s storage 

stantiation_nonce = instantiation_nonce + 1. 

stantiate algorithm is 
provided in steps 7-11. 

. 

al 
state and save the initial values. 

Find_state_space ( ).  

, reseed_counter, security_strength, 

 (“Success”, state_handle). 
F.1.2 Reseeding a Hash_DRBG Instantiation 

The implem he status when an error is 
encoun

Reseed_Hash_DRBG_Instantiation (...):  
Input: integer state_handle, bitstring ad

3. If (requested_instantiation_security_stren
112 

Else security_strength = 128. 

4. (status, entropy_input) = Get_entropy_input (security_strength, 1000). 

5. If
source:” || status, -1). 

Comment: Increment the nonce; actual coding 

limit is reached. 

6. in

Comment: The in

7. seed_material = entropy_input || instantiation_nonce || personalization_string

8. seed = Hash_df (seed_material, 440). 

9. V = seed.  

10. C = Hash_df ((0x00 || V), 440). 

11. reseed_counter = 1. 

Comment: Find an unused intern

12. (status, state_handle) = 

13. If (status ≠ “Success”), then Return (status, -1). 

14. internal_state (state_handle) = {V, C
prediction_resistance_flag}.  

15. Return

entation is designed to return a text message as t
tered.  

ditional_input. 
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Output: string status. 

Process: 

state_handle. 

1. _handle > 9) or (internal_state (state_handle) = 
{Null, Null, 0, 0, 0})), then Retur _handle”). 

te.  

ndle).V, security_strength = 
internal_state(state_handle).secu

Additional_input too long”). 

Comm

4. (status, entropy_input) = Get_entropy_i  1000). 

 

Comment: The reseed algorithm is provided 

py_input || additional_input. 

_material, 440). 

8. V = seed. 

9. C = Hash_df ((0x00 || V), 440). 

te the working_state portion 

11.

 = V. 

.C = C. 

urn (“Success”). 
ash_DRBG 

The implementation returns a Null string as the pseudorandom bits if an error has been 

Comment: Check the validity of the 

If ((state_handle < 0) or (state
n (“State not available for the state

Comment: Get the internal state values 
needed to determine the new internal sta

2. Get the appropriate internal_state values, e.g., V = 
internal_state(state_ha

rity_strength. 

Check the length of the additional_input. 

3. If (len (additional_input) > 512), then Return (“

ent: Get the entropy_input. 

nput (security_strength,

5. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_input
source:” || status). 

in steps 6-10. 

6. seed_material = 0x01 || V || entro

7. seed = Hash_df (seed

10. reseed_counter = 1. 

Comment: Upda
of the internal state. 

 Update the appropriate state values. 

11.1 internal_state (state_handle).V

11.2 internal_ state (state_handle)

11.3 internal_ state (state_handle).reseed_counter = reseed_counter. 

12. Ret
F.1.3 Generating Pseudorandom Bits Using H
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detected. Prediction resistance is requested when prediction_resistance_request = 1. 

In t entation, prediction resistance is requested by supplying 
prediction_resistance_request = 1 when the 

Hash_DRBG (...): 

Inp

Output: string status, bitstring pseudora

Process: 
he validity of the 

1. If ((state_handle < 0) or (state_ha
Null, 0, 0, 0})), then Return (“St l). 

2. V = internal_state (state_handle) ).C, 

iction_resistance_flag. 

rs. 

s requested”, 

ed_security_strength > security_strength), then Return (“Invalid 
ll). 

put) > 512), then Return (“Additional_input too long”, 

6. If ((prediction_resistance_reques
Null). 

 instantiate algorithm is inline with 
ns, this step has been written as a 

on 9.3 
n 

Section 10.1.1.4. Because of this combined 
 Section 9.3.is not required. 

7. If ((reseed_counter prediction_resistance_request = 1)), then  

his implem
Hash_DRBG function is invoked. 

ut: integer (state_handle, requested_no_of bits, requested_security_strength, 
prediction_resistance_request), bitstring additional_input. 

ndom_bits. 

Comment: Check t
state_handle. 

ndle > 9) or (state (state_handle) = {Null, 
ate not available for the state_handle”, Nul

Comment: Get the internal state values. 

.V, C = internal_state (state_handle
reseed_counter = internal_state (state_handle).reseed_counter, 
security_strength = internal_state (state_handle).security_strength, 
prediction_resistance_flag = internal_state 
(state_handle).pred

Comment: Check the validity of the other 
input paramete

3. If (requested_no_of_bits > 5000) then Return (“Too many bit
Null). 

4. If (request
requested_security_strength”, Nu

5. If (len (additional_in
Null). 

t = 1) and (prediction_resistance_flag ≠ 1)), 
ot instantiated”, then Return (“Prediction resistance capability n

Comment: Reseed if necessary. Note that 
since the
the functio
combination of steps 6 and 7 of Secti
and step 1 of the generate algorithm i

step, step 9 of

> 100,000) OR (
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Comment: Get the new internal state values 

 (state_handle).C, 
andle).reseed_counter. 

 additional_input = Null. 

t of the 

Hashgen routine is also 

8. If 

w Hash V additiona

9. 

that have changed. 

7.3 V = internal_state (state_handle).V, C = internal_state
reseed_counter = internal_state (state_h

7.4

Comment: Steps 8-16 provide the res
generate algorithm. Note that in this 
implementation, the 
inline as steps 9-13.  

(additional_input ≠ Null), then do 

7.1  =  (0x02 ||  || ). 

7.2 V = (V + w) mod 2

l_input
440. 

⎥⎥
⎤

⎢⎢
⎡=

outlen
bitsofnorequestedm ___ . 

10. data = V. 

11. W = the Null string. 

i = Hash (data). 

13. random_bits = Leftmost (requested_no_of_bits) bits of W. 

15. 

16. reseed_counter = reseed_counter

13. Update the changed values in the

13.1  internal_state (state_handl

13.2 internal_state (state_handle

12. For i = 1 to m 

12.1 w

12.2 W = W || wi. 
44012.3 data = (data + 1) mod 2 .  

pseudo

14. H = Hash (0x03 || V). 

V = (V + H + C + reseed_counter) mod 2440. 

 + 1. 

Comments: Update the working_state. 

 state. 

e).V = V. 

).reseed_counter = reseed_counter. 

 14. Return (“Success”, pseudorandom_bits).  
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F.2 HMA

This example of 
prediction nsists of a random 
value with security_strength/2 bits of entrop  
for entropy bits via the Get_entropy_input ngth/2 bits (i.e., by adding 
security_st t
in Section 

A personalization string is allowed, but additional input is not. A total of 3 internal states 
are provide  functions and algorithms are written as separate 
routines. Also, the Get_entropy_input func
first two parameters (as specified in Section 

The internal state contains the values for V, K
where V and C are bitstrings, and reseed_cou ngth are integers.  

In acco rity strengths of 112, 128, 192 and 256 
may be sup ions are applicable for the 
instantiate  algorithms: 

1. highest_supported_security_strength = 256. 

2. tput block (outlen) = 256 bits. 

3. mum entropy for the entropy input at instantiation = 3/2 
gth (this includes the entropy required for the nonce). 

4. 40 bits. 

5.  of bits per request (max_number_of_bits_per_request) = 7500 
bits

6. Res d_ interval) = 10,000 requests. 

7. Ma  string (max_personalization_string_length) 

8. tropy input (max _length) = 1000 bits. 
F.2.1 

This im an invalid state handle (-1) when an error 
is encountered. 

Instan

Input: e ), bitstring 

Outpu

C_DRBG Example 

HMAC_DRBG uses the SHA-256 hash function. Reseeding and 
resistance are not provided. The nonce for instantiation co

y; the nonce is obtained by increasing the call
call by security_stre

reng h/2 bits to the security_strength value). The Update function is specified 
10.1.2.2. 

d. For this implementation, the
tion uses only two input parameters, since the 
9) have the same value. 

ey, reseed_counter, and security_strength, 
nter and security_stre

rdance with Table 2 in Section 10.1, secu
ported. Using SHA-256, the following definit
and generate functions and

Ou

Required mini
security_stren

Seed length (seedlen) = 4

Maximum number
. 

eed_interval (resee

ximum length of the personalization
= 160 bits. 

Maximum length of the en
Instantiation of HMAC_DRBG 

plementation will return a text message and 

tiate_HMAC_DRBG (...):  

integ r (requested_instantiation_security_strength
personalization_string. 

t: string status, integer state_handle. 
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ters. 

o 

trength = 128 

t and 
the nonce. 

entropy_input (min_entropy, 1000). 

tropy 

Comment: Invoke the instantiate algorithm. 

 (entropy_input, 

9. If (status ≠ “Success”), then Return (“No available state space:” || status, -1). 

ate_handle). 

Ins

Input: bitstring lization_string). 

unter. 

Process: 

Check the validity of the input parame

1.   If (requested_instantiation_security_strength > 256), then Return (“Invalid 
requested_instantiation_security_strength”, -1). 

2. If (len (personalization_string) > 160), then Return (“Personalization_string 
too long”, -1) 

Comment: Set the security_strength t
one of the valid security strengths. 

3. If (requested_security_strength ≤ 112), then security_strength = 112 

Else (requested_ security_strength ≤ 128), then security_s

Else (requested_ security_strength ≤ 192), then security_strength = 192 

Else security_strength = 256. 

Comment: Get the entropy_inpu

4. min_entropy = 1.5 × security_strength. 

5. (status, entropy_input) = Get_

6. If (status ≠ “Success”), then Return (“Catastrophic failure of the en
source:” || status, -1). 

Note that the entropy_input contains the 
nonce. 

7. (V, Key, reseed_counter) = Instantiate_algorithm
personalization_string). 

Comment: Find an unused internal state and 
save the initial values. 

 ( ). 8. (status, state_handle) = Find_state_space

10. internal_state (state_handle) = {V, Key, reseed_counter, security_strength}. 

11. Return (“Success” and st

tantiate_algorithm (...): 

 (entropy_input, persona

Output: bitstring (V, Key), integer reseed_co
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d_material = entropy_input || personalization_string. 

2. Set Key to outlen bits of zeros. 

4. 

6. Return (V, Key, reseed_counter). 
F.2.2 Generating Pseudorandom Bits Using HMAC_

The im en 
detected.  

HMAC_D
Input: d_no_of_bits, requested_security_strength). 

Output: string (status), bitstring pseudorandom

Process: 
ent: Check for a valid state handle. 

handle) = 

2. V = internal_state (state_handle). y, 
security_strength = internal_stat handle).security_strength, 

Comment: Check the validity of the rest of 

3. If (requested_no_of_bits  > 7500) ny bits requested”, 

seed_counter) = Generate_algorithm 
unter, requested_number_of_bits). 

BG can no longer be used. 

ernal_state (state_handle) = {V, Key, security_strength, reseed_counter}. 

1. see

 

3. Set V to outlen/8 bytes of 0x01. 

(Key, V) = Update (seed_material, Key, V). 

5.  reseed_counter = 1. 

DRBG 

plementation returns a Null string as the pseudorandom bits if an error has be

RBG(...): 
integer (state_handle, requeste

_bits. 

Comm

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_
{Null, Null, 0, 0}), then Return (“State not available for the indicated 
state_handle”, Null).   

Comment: Get the internal state. 

V, Key = internal_state (state_handle).Ke
e (state_

reseed_counter = internal_state (state_handle).reseed_counter. 

the input parameters. 

, then Return (“Too ma
Null). 

4. If (requested_security_strength > security_strength), then Return (“Invalid 
requested_security_strength”, Null). 

Comment: Invoke the generate algorithm. 

5. (status, pseudorandom_bits, V, Key, re
(V, Key, reseed_co

6. If (status = “Reseed required”), then Return (“DR
Please re-instantiate or reseed”, Null). 

7. int
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Genera

Inp _counter, requested_number_of_bits). 

Ou V, Key), integer reseed_counter. 

Pro

Return (“Reseed required”, Null, V, Key, 

While (len (temp) < requested_no_of_bits) do: 

MAC (Key, V). 

of_bits) of temp. 

ey, V) = Update (additional_input, Key, V). 

6. reseed_counter = reseed_counter

F.3 CTR_

This example of CTR_DRBG uses AES-12 nce 
capabilities are available, and a block cipher derivation function using AES-128 is used. 
Both a s
are availab s separate 
routines. T S-128 in the 
ECB mode. 

The nonce for instantiation (instantiation_no it incrementing counter. 
The no
setting it to a fixed valu

The int
where V
always available, th

In accordan
suppor
reseed and

1. 

2. 

te_algorithm (...): 

ut: bitstring (V, Key), integer (reseed

tput: string status, bitstring (pseudorandom_bits, 

cess: 

1 If (reseed_counter ≥ 10,000), then 
reseed_counter). 

2. temp = Null. 

3 

3.1 V = H

3.2 temp = temp || V. 

4. pseudorandom_bits = Leftmost (requested_no_

5. (K

 + 1. 

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter). 
DRBG Example Using a Derivation Function 

8. The reseed and prediction resista

per onalization string and additional input are allowed. A total of 5 internal states 
le. For this implementation, the functions and algorithms are written a
he Block_Encrypt function (specified in Section 10.4.2) uses AE

nce) consists of a 32-b
nce is initialized when the DRBG is installed (e.g., by a call to the clock or by 

e) and is incremented for each instantiation. 

ernal state contains the values for V, Key, reseed_counter, and security_strength, 
 and Key are strings, and all other values are integers. Since prediction resistance is 

ere is no need for prediction_resistance_flag in the internal state.  

ce with Table 3 in Section 10.2.1, security strengths of 112 and 128 may be 
ted. Using AES-128, the following definitions are applicable for the instantiate, 

 generate functions: 

highest_supported_security_strength = 128. 

outlenOutput block length ( ) = 128 bits. 
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3. 

entropy for the entropy input during instantiation and reseeding 

um entropy input length (max _length) = 1000 bits. 

7. 

8. nal input length (max_additional_input_length) = 800 bits. 

9. 

10. Ma m quest (max_number_of_bits_per_request) = 4000 
bits

11. Res in erval) = 100,000 requests. Note that for this value, the 

F.3.1 

Update
Input:

ation Function 

This im d state handle (-1) when an error 
is e  function in Section 10.4.2, and uses AES-

Key length (keylen) = 128 bits. 

4. Required minimum 
= security_strength. 

5. Minimum entropy input length (min _length) = security_strength bits. 

6. Maxim

Maximum personalization string input length 
(max_personalization_string_input_length) = 800 bits. 

Maximum additio

Seed length (seedlen) = 256 bits. 

ximu  number of bits per re
. 

eed terval (reseed_int
instantiation count will not repeat during the reseed interval. 

The Update Function 

 (...): 
 bitstring (provided_data, Key, V). 

Output: bitstring (Key, V). 

Process: 
1. temp = Null. 

2. While (len (temp) < 256) do 

3.1 V = (V + 1) mod 2128. 

3.2 output_block = AES_ECB_Encrypt (Key, V). 

3.3 temp = temp || ouput_block. 

4. temp = Leftmost 256 bits of temp. 

5 temp = temp ⊕ provided_data. 

6. Key = Leftmost 128 bits of temp. 

7. V = Rightmost 128 bits of temp. 

8. Return (Key, V). 
F.3.2 Instantiation of CTR_DRBG Using a Deriv

plementation will return a text message and an invali
ncountered. Block_Cipher_df is the derivation
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128 ypt function. 

No
parame  internal state, since prediction resistance is always available.  

Ins

tring 

Ou

Comment: Check the validity of the input 

 (requested_instantiation_security_strength > 128) then Return (“Invalid 

sonalization_string 

(requested_instantiation_security_strength ≤ 112), then security_strength = 
 

Comment: Get the entropy input. 

atus, entropy_input) = Get_entropy_input (security_strength, 
gth, 1000). 

 (“Catastrophic failure of the entropy 

t the nonce; actual coding 
 nonce wraps when its 

it is reached, and that the counter 
ertains to all instantiations, not just this one. 

ion_nonce + 1. 

ent: Invoke the instantiate algorithm. 

ntiate_algorithm (entropy_input, 
ion_string). 

Comment: Find an available internal state and 
ues. 

 in the ECB mode as the Block_Encr

te that this implementation does not include the prediction_resistance_flag in the input 
ters, nor save it in the

tantiate_CTR_DRBG (...):  

Input: integer (requested_instantiation_security_strength), bits
personalization_string. 

tput: string status, integer state_handle. 

Process: 

parameters. 

1.  If
requested_instantiation_security_strength”, -1). 

2. If (len (personalization_string) > 800), then Return (“Per
too long”, -1). 

3. If 
112

Else security_strength = 128. 

4. (st
security_stren

5. If (status ≠ “Success”), then Return
source” || status, -1). 

Comment: Incremen
must ensure that the
storage lim
p

6. instantiation_nonce = instantiat

Comm

7. (V, Key, reseed_counter) = Insta
instantiation_nonce, personalizat

save the initial val

8. (status, state_handle) = Find_state_space ( ). 

9. If (status ≠ “Success”), then Return (“No available state space:” || status, -1). 
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t: Save the internal state. 

ounter). 

1. seed_material = entropy_input || 

2. seed_material = Block_Cipher_d rial, 256).  

4. nt: 128 bits. 

6. 

F.3.3 Res on Using a Derivation Function 

The implementation is designed to return a t rror is 
encoun

Reseed_C  (...):  
Inp

Outpu

Process: 

(internal_state(state_handle) = 
 

state_handle”).  

lues.  

2. V = internal_state (state_handle).
security_strength = internal_stat

 too long”). 

Commen

10. internal_state_ (state_handle) = {V, Key, reseed_counter, security_strength}. 

11. Return (“Success”, state_handle). 

Instantiate_algorithm (...): 
Input: bitstring (entropy_input, nonce, personalization_string). 

Output: bitstring (V, Key), integer (reseed_c

Process: 

nonce || personalization_string. 

f (seed_mate

3. Key = 0128. Comment: 128 bits. 

V = 0128. Comme

5. (Key, V) = Update (seed_material, Key, V). 

reseed_counter = 1. 

7. Return (V, Key, reseed_counter). 
eeding a CTR_DRBG Instantiati

ext message as the status when an e
tered. 

TR_DRBG_Instantiation
ut: integer (state_handle), bitstring additional_input. 

t: string status. 

Comment: Check for the validity of 
state_handle. 

1. If ((state_handle < 0) or (state_handle > 4) or 
{Null, Null, 0, 0}), then Return (“State not available for the indicated

Comment: Get the internal state va

V, Key = internal_state (state_handle).Key, 
e (state_handle).security_strength. 

Additional_input3. If (len (additional_input) > 800), then Return (“

4. (status, entropy_input) = Get_entropy_input (security_strength, 
security_strength, 1000). 
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6. If (status ≠ “Success”), then Retu ropy 

mment: Invoke the reseed algorithm. 

unter) = Reseed_algorithm (V, Key, reseed_counter, 
itional_input). 

 }. 

Reseed_algorithm (...): 
Input , 

Ou

Pro
input. 

k_Cipher_df (seed_material, 256). 

Key, V). 

ting Pseudorandom Bits Using CTR_DRBG 

f an error has been 
dete

CT
eger (state_handle, requested_no_of_bits, requested_security_strength, 

prediction_resistance_request), b

Output: string status, bitstring pseudora

Pro

Comment: Check the validity of state_handle. 

1. If ((state_handle < 0) or (state_ha ) = 

2. V = internal_state (state_handle).V, Key = internal_state (state_handle).Key, 
, 

rn (“Catastrophic failure of the ent
source:” || status). 

Co

7. (V, Key, reseed_co
entropy_input, add

8. internal_state (state_handle) = {V, Key, reseed_counter, security_strength

9. Return (“Success”). 

: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input
additional_input). 

tput: bitstring (V, Key), integer (reseed_counter). 

cess: 
1. seed_material = entropy_input || additional_

2. seed_material = Bloc

3. (Key, V) = Update (seed_material, 

4. reseed_counter = 1. 

5. Return V, Key, reseed_counter). 
F.3.4 Genera

The implementation returns a Null string as the pseudorandom bits i
cted.  

R_DRBG(...): 
Input: int

itstring additional_input. 

ndom_bits. 

cess: 

ndle > 4) or (internal_state (state_handle
{Null, Null, 0, 0}), then Return (“State not available for the indicated 
state_handle”, Null).   

Comment: Get the internal state. 

security_strength = internal_state (state_handle).security_strength
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Comment: Check the rest of the input 

d”, 

rength”, Null). 

nal_input) > 800), then Return (“Additional_input too long”, 

resistance_flag = 1)), then 

 status = Reseed_CTR_DRBG_Instantiation (state_handle, 
additional_input). 

). 

orking state values; 
trative information was not 

affected. 

dle).V, Key = internal_state 
ounter = internal_state 

7.5 reseed_required_flag = 0. 

Comment: Generate bits using the generate 

8. erate_algorithm 
f_bits, additional_input). 

status = “Reseed required”), then 

9.1 reseed_required_flag = 1. 

10. gth). 

11. 

Generate_algorithm (...): 
p

parameters. 

3. If (requested_no_of_bits  > 4000), then Return (“Too many bits requeste
Null). 

4. If (requested_security_strength > security_strength), then Return (“Invalid 
requested_security_st

5. If (len (additio
Null). 

6. reseed_required_flag = 0. 

7. If ((reseed_required_flag = 1) OR (prediction_

7.1

7.2 If (status ≠ “Success”), then Return (status, Null

Comment: Get the new w
the adminis

7.3 V = internal_state (state_han
(state_handle).Key, reseed_c
(state_handle).reseed_counter. 

7.4 additional_input = Null. 

algorithm. 

(status, pseudorandom_bits, V, Key, reseed_counter) = Gen
(V, Key, reseed_counter, requested_number_o

9. If (

9.2 Go to step 7. 

internal_state (state_handle) = {V, Key, reseed_counter, security_stren

Return (“Success”, pseudorandom_bits). 

In ut: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits) 
bitstring additional_input. 
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Ou d_counter. 

Process: 
1. If (reseed_counter > 100,000 n (“Reseed required”, Null, V, 

additional_input ≠ Null), then 

p = Null. 

uested_number_of_bits) do: 

.

4. uput_block. 

temp. 

6. zeros = 0256. 

7. (Key, V) = Update (zeros, Ke

e

9. R ter). 
F.4 CTR_DRBG Example Without a Derivation Function 

This exam s the previous example except that a derivation 
function is n
CTR_DRBG uses AES-128. The reseed and e. 
Both a personalization string and additional wed. A total of 5 internal states 
are ava  
routines. T 8 in 
the ECB m

The nonce for instantiation ( ) consists of a 32-bit incrementing counter 
that is the i tring (Section 8.6.1 states that when a 
derivation i  nonce, if used, is contained in the personalization string). 
The no
setting 

The int d_counter, and security_strength, 
wh d all other values are integers.Since prediction resistance is 
always

In accordance .1, security strengths of 112 and 128 may be 

tput: string status, bitstring (returned_bits, V, Key), integer resee

), then Retur
Key, reseed_counter). 

2. If (

2.1 additional_input = Block_Cipher_df (additional_input, 256). 

2.2  (Key, V) = Update (additional_input, Key, V). 

3. tem

4. While (len (temp) < req

4.1 V = (V + 1) mod 2128. 

4 2 output_block = AES_ECB_Encrypt (Key, V). 

3 temp = temp || o

5. returned_bits = Leftmost (requested_number_of_bits) of 

Comment: Produce a string of 256 zeros. 

y, V) 

8. r seed_counter = reseed_counter + 1. 

eturn (“Success”, returned_bits, V, Key, reseed_coun

ple of CTR_DRBG is the same a
ot used (i.e., full entropy is always available). As in Appendix F.3, the 

 prediction resistance capabilities are availabl
input are allo

ilable. For this implementation, the functions and algorithms are written as separate
he Block_Encrypt function (as specified in Section 10.4.2) uses AES-12
ode. 

instantiation_nonce
nitial bits of the personalization s
funct on is used, the

nce is initialized when the DRBG is installed (e.g., by a call to the clock or by 
it to a fixed value) and is incremented for each instantiation. 

ernal state contains the values for V, Key, resee
ere V and Key are strings, an

 available, there is no need for prediction_resistance_flag in the internal state. 

with Table 3 in Section 10.2
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suppor  
be com  Table 3, the maximum size of the personalization_string is 224 bits in 
order to instantiation_nonce (i.e., len 
(instantiati
256 bits). In ad ze of any additional_input is 256 bits (i.e., len 
(additional
F.4.1 The Upd

The update fun
F.4.2 Inst BG Without a Derivation Function 

The instan hat provided in 
Appendix F.3. c

• Step 2 is repl

If (len n Return (“Personalization_string too 
long”, -1). 

• Ste  : 

inst  + 1. 

per  personalization_string. 

The instan ed in 
Appendix 

e

 F.3.3, except that step 3 is replaced by: 

ted. The definitions are the same as those provided in Appendix F.3, except that to
pliant with
 accommodate the 32-bits of the 

on_nonce) + len (personalization_string) must be ≤ seedlen, where seedlen = 
dition, the maximum si

_input ≤ seedlen)). 
ate Function 

ction is the same as that provided in Appendix F.3.1. 
antiation of CTR_DR

tiate function (Instantiate_CTR_DRBG) is the same as t
2, ex ept for the following: 

aced by: 

(personalization_string) > 224), the

p 6 is replaced by

antiation_nonce = instantiation_nonce

sonalization_string = instantiation_nonce ||

tiate algorithm (Instantiate_algorithm) is the same as that provid
F.3.2, except that step 1 is replaced by: 

t mp = len (personalization_string). 

If (temp < 256), then personalization_string = personalization_string || 0256-temp.  

seed_material = entropy_input ⊕ personalization_string. 
F.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function 

• The reseed function (Reseed_CTR_DRBG) is the same as that provided in 
Appendix

If (len (additional_input) > 256), then Return (“Additional_input too long”). 

The instantiate algorithm (Reseed_algorithm) is the same as that provided in Appendix 
F.3.3, except that step 1 is replaced by: 

temp = len (additional_input). 

If (temp < 256), then additional_input = additional_input || 0256-temp.  

seed_material = entropy_input ⊕ additional_input. 
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ate_algorithm) is the same as that provided in Appendix 
replaced by: 

( temp. 

a consuming application to instantiate using any 
of t t  elliptic curve to be used is selected during instantiation in 
accordan

ested_instantiation_security_strength Elliptic Curve 

F.4.4 Generating Pseudorandom Bits Using CTR_DRBG 

The generate function (CTR_DRBG) is the same as that provided in Appendix F.3.4, 
except that step 5 is replaced by : 

If (len (additional_input) > 256), then Return (“Additional_input too long”, Null). 

The generate algorithm (Gener
F.3.4, except that step 2.1 is 

temp = len (additional_input). 

If temp < 256), then additional_input = additional_input || 0256-

F.5 Dual_EC_DRBG Example 

This example of Dual_EC_DRBG allows 
he hree prime curves. The

ce with the following: 

requ

≤ 112 P-256 

113 – 128 P-256 

129 – 192 P-384 

193 – 256 P-521 

 

A r tion resistance is not available. Both a 
per es are 
pro  as inline code within the 
fun

 with 
sec t
Get n e 
Get_entropy_input , since the first two 
parame

In a on 10.3.1, security strengths of 112, 128, 192 and 256 
ma ollowing 
def uncti s: 

2. Output block length (outlen): See Table 4. 

eseed capability is available, but predic
sonalization_string and an additional_input are allowed. A total of 10 internal stat
vided. For this implementation, the algorithms are provided
ctions. 

The nonce for instantiation (instantiation_nonce) consists of a random value
uri y_strength/2 bits of entropy; the nonce is obtained by a separate call to the 
_e tropy_input routine than that used to obtain the entropy input itself. Also, th

 function uses only two input parameters
ters (the min_entropy and the min_length) have the same value. 

The internal state contains values for s, seedlen, p, a, b, n, P, Q, block_counter and 
security_strength.  

ccordance with Table 4 in Secti
y be supported. SHA-256 has been selected as the hash function. The f
initions are applicable for the instantiate, reseed and generate f on

1. highest_supported_security_strength = 256. 
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ut at instantiation and reseed = 

) = 

 2 × security_strength. 

er_request) = 

9. Reseed interval (reseed_interval) = 232 blocks. 

a text message and an invalid state handle (-1) when an 
ERROR is en 0

Instantiate_Dual_EC_DRBG (

Input: integer (requested_ n_security_strength), b  
personalization_string

Output: string status, integ ndle.  

Process: 
Comment : Check the validity of the input 

string 

 

curity_strength.  

urity_strength = 112;  seedlen = 224; outlen = 240} 

ngth  ≤ 192), then  

4; outlen = 368} 

3. Required minimum entropy for the entropy inp
security_strength. 

4. Maximum entropy input length (max _length) = 1000 bits. 

5. Maximum personalization string length (max_personalization_string_length
800 bits. 

6. Maximum additional input length (max_additional_input_length) = 800 bits. 

7. Seed length (seedlen): =

8. Maximum number of bits per request (max_number_of_bits_p
1000 bits. 

F.5.1 Instantiation of Dual_EC_DRBG 

This implementation will return 
countered. Hash_df is specified in Section 1 .4.1. 

...): 

instantiatio
. 

itstring

er state_ha

parameters. 

1. If (requested_instantiation_security_strength > 256) then Return (“Invalid 
requested_instantiation_security_strength”, -1). 

2. If (len (personalization_string) > 800), then Return (“personalization_
too long”, -1). 

Comment : Select the prime field curve in
accordance with the 
requested_instantiation_se

3. If requested_instantiation_security_strength  ≤ 112), then 

{sec

Else if (requested_instantiation_security_strength  ≤ 128), then 

{security_strength = 128;  seedlen = 256; outlen = 240} 

Else if (requested_instantiation_security_stre

{security_strength = 192;, seedlen = 38
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4. te elliptic curve from Appendix A using the Table in 
and Q.  

5. tropy_input) = Get_entropy_input (security_strength, 1000). 

ut 

0). 

8.  “Success”), then Return (“Catastrophic failure of the random nonce 

Comment: Perform the instantiate algorithm. 

. 

 

ternal state and 
save the initial values. 

ace ( ). 

status ≠ “Success”), then Return (status, -1). 

14. internal_state (state_handle) = {s

F.5.2 

The implem igned to return a text message as the status when an error is 
encountered. 

Reseed_Dual_EC_DRBG_Instantiation (..

Input:

Output: string 

Process: 

eters. 

1. If ((state_handle  
ailable for the 

stat

Else {security_strength = 256;, seedlen = 512; outlen = 504}.  

Select the appropria
Appendix F.5 to obtain the domain parameters p, a, b, n, P, 

Comment: Request entropy_input. 

(status, en

6. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy_inp
source:” || status, -1). 

7. (status, instantiation_nonce) = Get_entropy_input (security_strength/2, 100

If (status ≠
source:” || status, -1). 

9.  seed_material = entropy_input  || instantiation_nonce || personalization_string

10. s = Hash_df (seed_material, seedlen).  

11. block_counter = 0.   

Comment: Find an unused in

12. (status, state_handle) = Find_state_sp

13. If (

, seedlen, p, a, b, n, P, Q, block_counter, 
security_strength}. 

15. Return (“Success”, state_handle). 
Reseeding a Dual_EC_DRBG Instantiation 

entation is des

.): 

 integer state_handle, string additional_input_string. 

status. 

Comment: Check the input param

te < 0) or (state_handle > 9) or (internal_sta
(state_handle).security_strength = 0)), then Return (“State not av

e_handle”).   
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2. ut too long”). 

es for 

3. s = internal_state (state_handle).

the appropriate entropy and bit length. 

 additional_input. 

aterial, seedlen). 

8. internal_state.block_counter = 0. 

F.5.3 

The im pseudorandom bits if an error is 

Dual_EC_DRBG (...): 

string additional_input. 

m_bits. 

Comment: Check for an invalid state_handle. 

state_handle < 0)  or (state_handle > 9) or (internal_state (state_handle) = 
0)), then Return (“State not avail

propriate state 

2. state_handle).s, seedlen = internal_state 

If (len (additional_input) > 800), then Return (“Additional_inp

Comment: Get the appropriate state valu
the indicated state_handle. 

s, seedlen = internal_state 
(state_handle).seedlen, security_strength = internal_state 
(state_handle).security_strength.  

Comment: Request new entropy_input with 

3.  (status, entropy_input) = Get_entropy_input (security_strength, 1000). 

4. If (status ≠ “Success”), then Return (“Catastrophic failure of the entropy 
source:”|| status). 

Comment: Perform the reseed algorithm. 

5.  seed_material = pad8 (s) || entropy_input  ||

6. s = Hash_df (seed_m

Comment: Update the changed values in the 
state. 

7. internal_state (state_handle).s = s. 

9. Return (“Success”). 
Generating Pseudorandom Bits Using Dual_EC_DRBG 

plemenation returns a Null string as the 
encountered. 

Input: integer (state_handle, requested_security_strength, requested_no_of_bits), 
bit

Output: string status, bitstring pseudorando

Process: 

1. If ((
able for the state_handle”, Null). 

Comment: Get the ap
values for the indicated state_handle. 

s = internal_state (

 

 



NIST SP 800-90 DRAFT  December 2005 

123

 

 
(state_handle).Q, block_counter 

 the input 

3. many bits 

4. If (requested_security_strength >
requested_strength”, Null). 

g”, 

Comment: Check whether a reseed is 

(state_handle).seedlen, P = internal_state (state_handle).P, Q = internal_state
= internal_state (state_handle).block_counter. 

Comment: Check the rest of
parameters. 

If (requested_number_of_bits > 1000), then Return (“Too 
requested”, Null). 

 security_strength), then Return (“Invalid 

5. If (len (additional_input) > 800), then Return (“Additional_input too lon
Null). 

required. 

6. If (block_counter + ⎥⎥
⎤

⎢
⎡ bits_of_number_requested > 232), then
⎢ outlen

 

6.1 Reseed_Dual_EC_DRBG_
additional_input). 

eturn (status). 

e (state_handle).s, block_counter = internal_state 
lock_counter. 

Comment: Execute the generate algorithm. 

_input = Null) then additional_input = 0    

s. 

sh_df (pad8 (additional_input), seedlen). 

Produce requested_no_of_bits,  
outlen bits at a time: 

8. temp = the Null string. 

10. 

11. s = ϕ( x(t ∗ P)).     

Instantiation (state_handle, 

6.2 If (status ≠ “Success”), then R

6.3 s = internal_stat
(state_handle).b

6.4 additional_input = Null. 

  7. If (additional

Comment:  additional_input set to m zeroe

Else  additional_input = Ha

Comment:  

9. i = 0. 

 t = s ⊕ additional_input.    

12. r  = ϕ( x(s ∗ Q)).  
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13.

14.

15. block_counter = block_counter +

18. ate (temp, i × outlen, requested_no_of_bits). 

s 
in the state. 

19. internal_state.s = s. 

20. internal_state.block_counter = block_counter. 

21. Return (“Success”, pseudorandom_bits). 

  temp = temp || (rightmost outlen bits of r ). 

 additional_input=0seedlen.  Comment:  seedlen zeroes; additional_input 
is added only on the first iteration. 

 1. 

16. i = i + 1. 

17. If (len (temp) < requested_no_of_bits), then go to step 10. 

 pseudorandom_bits = Trunc

Comment: Update the changed value
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Almost with the primary purpose of generating 
good random bits. Instead, he typically starts with some goal that he wishes to accomplish, 
then de  cryptographic mechanisms, such as digital signatures or block 
ciphers understand the 
require
generat
inadvertently weaken the cryptographic mechanisms
this point, there are three things that may guide the designer's choice of a DRBG: 

a. a set of cryptographic primitives as part of 
 one of these primitives, he can 

anslates to lower gate 
are that must be protected against 

probing and power analysis.  In software, this translates to fewer lines of code to 
write, test, and validate. 

For example, a module that generates RSA signatures has an available hash 
function, so a hash-based DRBG is a natural choice. 

b. He may already have decided to trust a block cipher, hash function, keyed hash 
function, etc., to have certain properties.  By choosing a DRBG based on similar 
properties, he can minimize the number of algorithms he has to trust. 

For example, an AES-based DRBG might be a good choice when a module 
provides encryption with AES.  Since the security of the DRBG is dependent on the 
strength of AES, the module's security is not made dependent on any additional 
cryptographic primitives or assumptions. 

c. Multiple cryptographic primitives may be available within the system or 
consuming application, but there may be restrictions that need to be addressed (e.g., 
code size or performance requirements).   

The DRBGs specified in this Recommendation have different performance characteristics, 
implementation issues, and security assumptions. 
G.1 Hash_DRBG 

Hash_DRBG is based on the use of an Approved hash function in a counter mode similar 
to the counter mode specified in NIST SP 800-38A.  For each Generate request, the current 
value of V (a secret value in the internal state) is used as the starting counter that is 
iteratively changed to generate each successive n-bit block of requested output, where n is 
the number of bits in the hash function output block. At the end of the Generate request, 
and before the pseudorandom output is returned to the consuming application, the secret 

 no application or system designer starts 

cides on some
 that can help him achieve that goal.  Typically, as he begins to 
ments of those cryptographic mechanisms, he learns that he will also have to 
e some random bits, and that this must be done with great care, or he may 

 that he has chosen to implement.  At 

He may already have decided to include 
his implementation. By choosing a DRBG based on
minimize the cost of adding that DRBG.  In hardware, this tr
count, less power consumption, and less hardw
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value V s updated in order to prevent backtracking.   

Performance.  s one hash 
function compu tation is 

or 
 a 

sh 
stance, 

uested 
sec y
entr y
Genera
Hash_
Recom

Constr own in Table 2 of Section 10.1, for each hash function, up 
to 248 g 19

Resour , and the ability to perform 
add n, 
Ha
implem
10.1.1.

Algori
discuss
G.2 H

HM AC 
constru
V, the D

rates a new Key and V, each requiring 
ion.  

 

 i

 Within a Generate request, each n-bit block of output require
tation and some additions; an additional hash function compu

required to provide the backtracking resistance.  Hash_DRBG produces pseudorandom 
output bits in about half the time required by HMAC_DRBG.   

Security.  Hash_DRBG’s security depends on the underlying hash function’s behavi
when processing a series of sequential input blocks.  If the hash function is replaced by
random oracle, Hash_DRBG is secure.  It is difficult to relate the properties of the ha
function required by Hash_DRBG with common properties, such as collision resi
pre-image resistance, or pseudorandomness.  There are known problems with 
Hash_DRBG when the DRBG is instantiated with insufficient entropy for the req

urit  strength, and then later provided with enough entropy to attain the amount of 
op  required for the security strength, via the inclusion of additional input during a 

te request. However, these problems do not affect the DRBG’s security when 
DRBG is instantiated with the amount of entropy specified in this 
mendation.  

aints on Outputs.  As sh
enerate requests may be made, each of up to 2  bits.   

ces.  Hash_DRBG requires access to a hash function
ition with seedlen-bit integers.  Hash_DRBG uses the hash-based derivation functio
sh_df specified in Section 10.4.1 during instantiation and reseeding. Any 

entation requires the storage space required for the internal state (see Section 
1).  

thm Choices.  The choice of hash functions that may be used by Hash_DRBG is 
ed in Section 10.1. 
MAC_DRBG 

AC_DRBG is built around the use of some approved hash function in the HM
ction.  To generate pseudorandom bits from a secret key (Key) and a starting value 
RBG computes  

 V = HMAC (Key, V). 

At the end of a generation request, the DRBG gene
one HMAC computat

Performance.  HMAC_DRBG produces pseudorandom outputs considerably more slowly 
than the underlying hash function processes inputs; for SHA-256, a long generate request 
produces output bits at about 1/4 of the rate that the hash function can process input bits.  
Each generate request also involves additional overhead equivalent to processing 2048 
extra bits with SHA-256.  Note, however, that hash functions are typically quite fast; few if
any consuming applications are expected to need output bits faster than HMAC_DRBG 
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 inputs.  In general, even 

 
e 

entation for 
. However, a general-purpose hash function implementation can 

G is based on using an Approved block cipher algorithm in counter mode (see 
y 

nter; after a generate request, a new key and new 
re generated.   

e 

end of each Generate request, work equivalent to 2, 3 or 4 
nding on the choice of underlying block cipher algorithm, to 

enerat s for the next Generate request. 

 
he sense that, so long as some limits on the total number of 

 

Security.  The security of HMAC_DRBG is based on the assumption that an Approved 
hash function used in the HMAC construction is a pseudorandom function family.  
Informally, this just means that when an attacker doesn’t know the key used, HMAC 
outputs look random, even given knowledge and control over the
relatively weak hash functions seem to be quite strong when used in the HMAC 
construction.  On the other hand, there is not a reduction proof from the hash function’s 
collision resistance properties to the security of the DRBG; the security of HMAC_DRBG
ultimately relies on the pseudorandomness properties of the underlying hash function. Not
that the pseudorandomness of HMAC is a widely used assumption in designing, and the 
HMAC_DRBG requires far less demanding properties of the underlying hash function 
than Hash_DRBG. 

Constraints on Outputs.  As shown in Table 2 of Section 10.1, for each hash function, up 
to 248 generate requests may be made, each of up to 219 bits.   

Resources.  HMAC_DRBG requires access to a dedicated HMAC implem
optimal performance
always be used to implement HMAC. Any implementation requires the storage space 
required for the internal state (see Section 10.1.2.1). 

Algorithm Choices.  The choice of hash functions that may be used by HMAC_DRBG is 
discussed in Section 10.1. 
G.3 CTR_DRBG 

CTR_DRB
SP 800-38A).  At the present time, only three-key TDEA and AES are approved for use b
the Federal government for use in this DRBG.  Pseudorandom outputs are generated by 
encrypting successive values of a cou
starting counter value a

Performance.  For large Generate requests, CTR_DRBG produces outputs at the sam
speed as the underlying block cipher algorithm encrypts data.  Furthermore, CTR_DRBG 
is parallelizeable.  At the 
encryptions is performed, depe
g e new keys and counter

Security.  The security of CTR_DRBG is directly based on the security of the underlying
block cipher algorithm, in t
outputs are observed, any attack on CTR_DRBG represents an attack on the underlying 
block cipher algorithm.   

Constraints on Outputs.  As shown in Table 3 of Section 10.2.1, for each of the three 
AES key sizes, up to 248 generate requests may be made, each of up to 219 bits, with a 
negligible chance of any weakness that does not represent a weakness in AES.  However, 
the smaller block size of TDEA imposes more constraints: each generate request is limited
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ost 232 such requests may be made. 

g 

to 213 bits, and at m

Resources.  CTR_DRBG may be implemented with or without a derivation function. 

When a derivation function is used, CTR_DRBG can process the personalization strin
and any additional input in the same way as any other DRBG, but at a cost in performance 
because of the use of the derivation function. Such an implementation may be seeded by 
any Approved source of entropy input that may or may not provide full entropy. 

When a derivation function is not used, CTR_DRBG is more efficient when the 
personalization string and any additional input are provided, but is less flexible because the 
lengths of the personalization string and additional input cannot exceed seedlen bits. Such
implementations must be seeded by a source of entropy input that provides full entropy 
(e.g., an Approved co

 

nditioned entropy source or Approved RBG). 

ection 10.2.1.1). 

tputs are produced by first computing R to be the x-
nt S*P and then extracting low order bits from the x-coordinate of the 

irst, note that the use of fixed base points allows a 

e not required.  A given 

 
 

trength curves will be slower and 

CTR_DRBG requires access to a block cipher algorithm, including the ability to change 
keys, and the storage space required for the internal state (see S

Algorithm Choices.  The choice of block cipher algorithms and key sizes that may be 
used by CTR_DRBG is discussed in Section 10.2.1. 
G.4 DRBGs Based on Hard Problems 

The Dual_EC_DRBG generates pseudorandom outputs by extracting bits from elliptic 
curve points.  The secret, internal state of the DRBG is a value S that is the x-coordinate of 
a point on an elliptic curve.  Ou
coordinate of the poi
elliptic curve point R*Q. 

Performance.  Due to the elliptic curve arithmetic involved in this DRBG, this algorithm 
generates pseudorandom bits more slowly than the other DRBGS in this Recommendation.  
It should be noted, however, that the design of this algorithm allows for certain 
performance-enhancing possibilities.  F
substantial increase in the performance of this DRBG via the use of tables.  By storing 
multiples of the points P and Q, the elliptic curve multiplication can be accomplished via 
point additions rather than multiplications, a much less expensive operation.  In more 
constrained environments where table storage is not an option, the use of so-called 
Montgomery Coordinates of the form (X : Z) can be used as a method to increase 
performance, since the y-coordinates of the computed points ar
implementation of this DRBG need not include all three of the NIST-Approved curves.  
Once the designer decides upon the strength required by a given application, he can then
choose to implement the single curve that most appropriately meets this requirement.  For
a common level of optimization expended, the higher s
tend toward less efficient use of output blocks.  To mitigate the latter, the designer should 
be aware that every distinct request for random bits, whether for two million bits or a 
single bit, requires the computational expense of at least two elliptic curve point 
multiplications.  Applications requiring large blocks of random bits (such as IKE or SSL), 
can thus be implemented most efficiently by first making a single call to the DRBG for all 
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se bits as required by the protocol.  

-
 factor of 
 

 particular instance of 
e 

t blocks 

ed with Dual_EC_DRBG, provided that 
= 

at 

te (see 10.3.1.1).  Some optimizations require additional storage 

the required bits, and then appropriately partitioning the
For applications that already have hardware or software support for elliptic curve 
arithmetic, this DRBG is a natural choice, as it allows the designer to utilize existing 
capabilities to generate truly high-security random numbers. 

Security.  The security of Dual_EC_DRBG is based on the so-called "Elliptic Curve 
Discrete Logarithm Problem" that has no known attacks better than the so-called "meet-in
the-middle" attacks.  For an elliptic curve defined over a field of size 2m, the work
these attacks is approximately 2m/2, so that solving this problem is computationally
infeasible for the curves in this Recommendation.  The Dual_EC_DRBG is the only 
DRBG in this Recommendation whose security is related to a hard problem in number 
theory. 

Constraints on Outputs.  For any one of the three elliptic curves, a
Dual_EC_DRBG may generate at most 232 output blocks before reseeding, where the siz
of the output blocks is discussed in Section 10.3.1.4.  Since the sequence of outpu
is expected to cycle in approximately sqrt(n) bits (where n is the (prime) order of the 
particular elliptic curve being used), this is quite a conservative reseed interval for any one 
of the three possible curves. 

Resources.  Any entropy input source may be us
it is capable of generating at least min_entropy bits of entropy in a string of max_length 
213 bits.  This DRBG also requires an appropriate hash function (see Table 4) that is used 
exclusively for producing an appropriately-sized initial state from the entropy input 
instantiation or reseeding.  An implementation of this DRBG must also have enough 
storage for the internal sta
for moderate to large tables of pre-computed values. 

Algorithm Choices.  The choice of appropriate elliptic curves and points used by 
Dual_EC_DRBG is discussed in Appendix A.1. 
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